Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics

预言 阈值 子网 人工智能 计算机科学 稳健性(进化) 卷积神经网络 过程(计算) 一般化 特征(语言学) 机器学习 特征提取 过度拟合 人工神经网络 模式识别(心理学) 数据挖掘 工程类 化学 图像(数学) 哲学 数学分析 操作系统 基因 生物化学 语言学 计算机安全 数学
作者
Yiwei Wang,Lei Deng,Lianyu Zheng,Robert X. Gao
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:60: 512-526 被引量:97
标识
DOI:10.1016/j.jmsy.2021.07.008
摘要

Remaining useful life (RUL) prediction is a challenging task for prognostics and health management (PHM). Due to the complexity physics involved for precisely modeling the machine degradation process, learning-based data-driven methods, which learn the degradation pattern solely from the historical data without referring to physical models, have become promising alternatives to model-based prognostic methods. In this paper, a new temporal convolutional neural network (TCN) with soft threshold and attention mechanism is proposed for machinery prognostics. Multi-channel sensor data are directly used as inputs to the prognostic network without feature extraction as a pre-processing step. A soft thresholding mechanism is embedded in the network, serving as a flexible activation function for certain layers to preserve useful features. The threshold value is adaptively learned by a subnetwork trained with the attention mechanism instead of assigning a deterministic value to the threshold. As a result, each feature map is assigned a customized threshold value such that the network training process can focus on features that are more critical to RUL prediction. To verify the generalization ability of the proposed method, three benchmark datasets related to rolling bearings and cutting tools are tested, and the performance of the developed method is compared with several state-of-the-art prognostic approaches. The results show that for all the three case studies, the developed method has produced accurate RUL prediction with good robustness and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI5应助liu采纳,获得30
3秒前
猴子大王666完成签到,获得积分10
4秒前
搜集达人应助恍若采纳,获得10
4秒前
天天快乐应助周小鱼采纳,获得10
5秒前
miao发布了新的文献求助10
5秒前
小丹发布了新的文献求助10
5秒前
科研通AI2S应助Jeffery426采纳,获得10
5秒前
123完成签到,获得积分10
6秒前
7秒前
朱朱完成签到,获得积分10
7秒前
过时的小凝完成签到,获得积分10
7秒前
动漫大师发布了新的文献求助10
8秒前
善学以致用应助叶伟帮采纳,获得10
9秒前
852应助叶伟帮采纳,获得10
9秒前
爆米花应助ccalvintan采纳,获得10
9秒前
科研通AI5应助叶伟帮采纳,获得10
9秒前
希望天下0贩的0应助Jeremy采纳,获得10
9秒前
9秒前
10秒前
科研通AI5应助zengyiqiao采纳,获得10
10秒前
斯文败类应助易方采纳,获得10
11秒前
迷人冥完成签到 ,获得积分10
11秒前
所所应助czy采纳,获得10
12秒前
卷筒洗衣机完成签到,获得积分10
13秒前
揽月yue应助shuiwuming采纳,获得10
13秒前
周小鱼发布了新的文献求助10
13秒前
奉年完成签到,获得积分10
14秒前
我要发sci应助碧蓝一兰采纳,获得10
14秒前
动漫大师发布了新的文献求助10
14秒前
zjq完成签到,获得积分10
14秒前
Ava应助凌晨采纳,获得10
14秒前
15秒前
一叶给一叶的求助进行了留言
15秒前
费雪卉发布了新的文献求助10
16秒前
DAI完成签到,获得积分10
16秒前
17秒前
传奇3应助miao采纳,获得10
17秒前
木子成发布了新的文献求助10
18秒前
小葵发布了新的文献求助10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386