Laryngoscope8: Laryngeal image dataset and classification of laryngeal disease based on attention mechanism

计算机科学 人工智能 模式识别(心理学) 机制(生物学) 图像(数学) 上下文图像分类 对象(语法) 过程(计算) 计算机视觉 认识论 操作系统 哲学
作者
Yin Li,Yang Liu,Mingtao Pei,Jinrang Li,Mukun Wu,Yuanyuan Jia
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:150: 207-213 被引量:21
标识
DOI:10.1016/j.patrec.2021.06.034
摘要

Laryngeal disease is a common disease worldwide. However, currently there are no public laryngeal image datasets, which hinders the development of automatic classification of laryngeal disease. In this work, we build a new laryngeal image dataset called Laryngoscope8, which comprises 3057 images of 1950 unique individuals, and the images have been labeled with one of eight labels (including seven pathological labels and one normal label) by professional otolaryngologists. We also propose a laryngeal disease classification method, which uses attention mechanism to obtain the critical area under the supervision of image labels for laryngeal disease classification. That is, we first train a CNN model to classify the laryngeal images. If the classification result is correct, the region with strong response is most likely a critical area. The regions with strong responses are used as training data to train an object localization model that can automatically locate the critical area. Given an image for classification, the trained object localization model is employed to locate the critical area. Then, the located critical area is employed for image classification. The entire process only requires image-level labels and does not require manual labeling of the critical area. Experiment results show that the proposed method achieves promising performance in laryngeal disease classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助Zzz采纳,获得10
3秒前
852应助颜三问采纳,获得10
3秒前
3秒前
5秒前
药学生应助文件撤销了驳回
5秒前
6秒前
lichee发布了新的文献求助10
7秒前
9秒前
xiao发布了新的文献求助10
10秒前
Jmting完成签到,获得积分10
12秒前
zyp发布了新的文献求助10
12秒前
xiaolin678发布了新的文献求助10
12秒前
12秒前
12秒前
15秒前
伶俐的万天完成签到,获得积分20
15秒前
Ying发布了新的文献求助10
15秒前
欢喜若灵发布了新的文献求助10
16秒前
16秒前
16秒前
lichee完成签到,获得积分20
17秒前
拾叁发布了新的文献求助10
18秒前
gehongbing完成签到 ,获得积分10
19秒前
诗酒趁年华完成签到,获得积分10
19秒前
427完成签到 ,获得积分10
20秒前
20秒前
20秒前
颜三问发布了新的文献求助10
21秒前
21秒前
22秒前
Zlq发布了新的文献求助10
22秒前
23秒前
Xi完成签到,获得积分10
24秒前
25秒前
YZF完成签到,获得积分10
25秒前
ding应助stella采纳,获得10
25秒前
我是蘑菇发布了新的文献求助10
26秒前
博修发布了新的文献求助10
26秒前
Jmting发布了新的文献求助10
26秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4051988
求助须知:如何正确求助?哪些是违规求助? 3590055
关于积分的说明 11409710
捐赠科研通 3316675
什么是DOI,文献DOI怎么找? 1824325
邀请新用户注册赠送积分活动 896051
科研通“疑难数据库(出版商)”最低求助积分说明 817176