HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network

计算机科学 可解释性 稳健性(进化) 联营 计算生物学 源代码 鉴定(生物学) 序列母题 人工智能 卷积神经网络 深度学习 数据挖掘 机器学习 生物 基因 遗传学 植物 操作系统
作者
Yuning Yang,Zilong Hou,Yansong Wang,Hongli Ma,Pingping Sun,Zhiqiang Ma,Ka‐Chun Wong,Xiangtao Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbac027
摘要

Identifying genome-wide binding events between circular RNAs (circRNAs) and RNA-binding proteins (RBPs) can greatly facilitate our understanding of functional mechanisms within circRNAs. Thanks to the development of cross-linked immunoprecipitation sequencing technology, large amounts of genome-wide circRNA binding event data have accumulated, providing opportunities for designing high-performance computational models to discriminate RBP interaction sites and thus to interpret the biological significance of circRNAs. Unfortunately, there are still no computational models sufficiently flexible to accommodate circRNAs from different data scales and with various degrees of feature representation. Here, we present HCRNet, a novel end-to-end framework for identification of circRNA-RBP binding events. To capture the hierarchical relationships, the multi-source biological information is fused to represent circRNAs, including various natural language sequence features. Furthermore, a deep temporal convolutional network incorporating global expectation pooling was developed to exploit the latent nucleotide dependencies in an exhaustive manner. We benchmarked HCRNet on 37 circRNA datasets and 31 linear RNA datasets to demonstrate the effectiveness of our proposed method. To evaluate further the model's robustness, we performed HCRNet on a full-length dataset containing 740 circRNAs. Results indicate that HCRNet generally outperforms existing methods. In addition, motif analyses were conducted to exhibit the interpretability of HCRNet on circRNAs. All supporting source code and data can be downloaded from https://github.com/yangyn533/HCRNet and https://doi.org/10.6084/m9.figshare.16943722.v1. And the web server of HCRNet is publicly accessible at http://39.104.118.143:5001/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无味发布了新的文献求助10
刚刚
4秒前
小二郎完成签到 ,获得积分10
4秒前
4秒前
虞涵易发布了新的文献求助10
5秒前
西原的橙果完成签到,获得积分10
6秒前
111发布了新的文献求助10
7秒前
忧伤的冰薇完成签到 ,获得积分10
7秒前
玖念完成签到,获得积分10
8秒前
称心访琴完成签到,获得积分10
8秒前
8秒前
8秒前
Leo963852完成签到 ,获得积分10
10秒前
10秒前
10秒前
Orange应助rudjs采纳,获得10
12秒前
万能图书馆应助mxrsxxn采纳,获得10
13秒前
幼稚完成签到,获得积分10
13秒前
华仔应助ericlee1984采纳,获得10
14秒前
jiecao发布了新的文献求助10
14秒前
fanfan完成签到,获得积分10
14秒前
16秒前
冷静夜蕾发布了新的文献求助10
16秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
18秒前
wbhou完成签到 ,获得积分10
18秒前
英姑应助Ghiocel采纳,获得10
19秒前
小林完成签到,获得积分10
22秒前
zmy发布了新的文献求助10
22秒前
22秒前
领导范儿应助毛豆采纳,获得10
24秒前
cvvl2完成签到,获得积分20
24秒前
24秒前
健壮的绿凝完成签到,获得积分10
26秒前
大红完成签到,获得积分10
26秒前
Zsx完成签到,获得积分10
28秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Building Quantum Computers 458
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3854816
求助须知:如何正确求助?哪些是违规求助? 3397565
关于积分的说明 10602574
捐赠科研通 3119339
什么是DOI,文献DOI怎么找? 1719168
邀请新用户注册赠送积分活动 828098
科研通“疑难数据库(出版商)”最低求助积分说明 777276