Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm

无人机 卡车 蚁群优化算法 车辆路径问题 计算机科学 布线(电子设计自动化) 服务(商务) 整数规划 蚁群 运筹学 工程类 数学优化 算法 计算机网络 业务 汽车工程 数学 遗传学 生物 营销
作者
Shan-Huen Huang,Ying‐Hua Huang,Carola Blázquez,Chia-Yi Chen
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:51: 101536-101536 被引量:100
标识
DOI:10.1016/j.aei.2022.101536
摘要

E-commerce and logistics companies are facing important challenges to satisfy the rapid growth of customer demands. Unmanned aerial vehicles such as drones are an emerging technology that are very useful to cope with rising customer expectations of fast, flexible, and reliable delivery services. Drones work in tandem with trucks to perform parcel delivery, which have proven to reduce costs, CO2 emissions, and delivery times. This research proposes a mixed integer programming formulation to address the Vehicle Routing Problem with Drone (VRPD) by assigning customers to drone-truck pairs, determining the number of dispatching drone-truck units, and obtaining optimal service routes while the fixed and travel costs of both vehicles are minimized. Given the NP-hard nature of the VRPD, an ant colony optimization (ACO) algorithm is elaborated to solve this problem. Two novel methods are proposed to investigate the efficiency of the drone-truck combination by allowing the drones to perform additional delivery services to only one feasible customer and also multiple feasible customers while the truck waits at a customer location. Experimental results show that the proposed ACO algorithm can effectively solve the VRDP for different size instances and different customer location distributions, and is successful in providing timely solutions for small test instances within 1% of the optimal solutions. Finally, experimentation also reveals that the ACO algorithm outperforms the classical VRP by obtaining cost-savings of over 30% for large instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑涔雨发布了新的文献求助10
刚刚
冰魂应助科研通管家采纳,获得30
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
aldehyde应助科研通管家采纳,获得10
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
zhou应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
aldehyde应助科研通管家采纳,获得10
1秒前
Ava应助呱呱爱吃瓜瓜采纳,获得10
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
欣喜思萱完成签到,获得积分10
1秒前
aldehyde应助科研通管家采纳,获得10
2秒前
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
溪夕er完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
coolkid应助淡淡红茶采纳,获得10
3秒前
想要毕业完成签到,获得积分10
3秒前
多多发布了新的文献求助10
4秒前
Daaz完成签到,获得积分10
5秒前
英俊的铭应助雪山飞龙采纳,获得10
6秒前
bkagyin应助yy采纳,获得10
7秒前
profit完成签到 ,获得积分10
7秒前
8秒前
sobergod完成签到 ,获得积分10
8秒前
8秒前
9秒前
yiwei完成签到,获得积分10
10秒前
yxy840325发布了新的文献求助10
11秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885414
求助须知:如何正确求助?哪些是违规求助? 3427521
关于积分的说明 10755740
捐赠科研通 3152431
什么是DOI,文献DOI怎么找? 1740292
邀请新用户注册赠送积分活动 840155
科研通“疑难数据库(出版商)”最低求助积分说明 785181