Research, Modelling and Prediction of the Influence of Technological Parameters on the Selected 3D Roughness Parameters, as Well as Temperature, Shape and Geometry of Chips in Milling AZ91D Alloy

机械加工 可加工性 表面粗糙度 材料科学 炸薯条 表面光洁度 机械工程 刀具磨损 人工神经网络 冶金 复合材料 计算机科学 工程类 人工智能 电信
作者
Monika Kulisz,Ireneusz Zagórski,Jerzy Jóźwik,Jarosław Korpysa
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 4277-4277 被引量:6
标识
DOI:10.3390/ma15124277
摘要

The main purpose of the study was to define the machining conditions that ensure the best quality of the machined surface, low chip temperature in the cutting zone and favourable geometric features of chips when using monolithic two-teeth cutters made of HSS Co steel by PRECITOOL. As the subject of the research, samples with a predetermined geometry, made of AZ91D alloy, were selected. The rough milling process was performed on a DMU 65 MonoBlock vertical milling centre. The machinability of AZ91D magnesium alloy was analysed by determining machinability indices such as: 3D roughness parameters, chip temperature, chip shape and geometry. An increase in the feed per tooth fz and depth of cut ap parameters in most cases resulted in an increase in the values of the 3D surface roughness parameters. Increasing the analysed machining parameters did not significantly increase the instantaneous chip temperature. Chip ignition was not observed for the current cutting conditions. The conducted research proved that for the adopted conditions of machining, the chip temperature did not exceed the auto-ignition temperature. Modelling of cause-and-effect relationships between the variable technological parameters of machining fz and ap and the temperature in the cutting zone T, the spatial geometric structure of the 3D surface "Sa" and kurtosis "Sku" was performed with the use of artificial neural network modelling. During the simulation, MLP and RBF networks, various functions of neuron activation and various learning algorithms were used. The analysis of the obtained modelling results and the selection of the most appropriate network were performed on the basis of the quality of the learning and validation, as well as learning and validation error indices. It was shown that in the case of the analysed 3D roughness parameters (Sa and Sku), a better result was obtained for the MLP network, and in the case of maximum temperature, for the RBF network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xr发布了新的文献求助10
刚刚
谨慎的向南完成签到,获得积分10
1秒前
1秒前
惠哲发布了新的文献求助10
1秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
每文发布了新的文献求助10
6秒前
wen发布了新的文献求助10
9秒前
9秒前
10秒前
Jeremy发布了新的文献求助10
10秒前
alile完成签到,获得积分10
10秒前
10秒前
王小美发布了新的文献求助10
12秒前
PAPA发布了新的文献求助10
12秒前
英俊的铭应助xr采纳,获得10
13秒前
13秒前
柯岩完成签到,获得积分10
13秒前
华仔应助快乐茗采纳,获得10
14秒前
白云垛发布了新的文献求助10
14秒前
小鸣完成签到 ,获得积分10
16秒前
隐形曼青应助万灵竹采纳,获得10
16秒前
NeoWu发布了新的文献求助10
18秒前
田一完成签到,获得积分10
20秒前
每文完成签到,获得积分10
21秒前
迷你的觅云完成签到,获得积分10
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
华仔应助白云垛采纳,获得30
25秒前
Jasper应助亦玉采纳,获得10
26秒前
27秒前
Lucky小M完成签到,获得积分10
28秒前
曾经的彩虹完成签到,获得积分10
29秒前
29秒前
CodeCraft应助Rita采纳,获得10
30秒前
ZOZO发布了新的文献求助10
31秒前
万灵竹发布了新的文献求助10
33秒前
33秒前
依小米完成签到 ,获得积分10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202756
求助须知:如何正确求助?哪些是违规求助? 3737404
关于积分的说明 11768221
捐赠科研通 3409591
什么是DOI,文献DOI怎么找? 1870750
邀请新用户注册赠送积分活动 926225
科研通“疑难数据库(出版商)”最低求助积分说明 836473