Classification of Driver Cognitive Load: Exploring the Benefits of Fusing Eye-Tracking and Physiological Measures

眼动 计算机科学 认知负荷 人工智能 人工神经网络 认知 支持向量机 驾驶模拟器 形势意识 机器学习 模拟 工程类 心理学 航空航天工程 神经科学
作者
Dengbo He,Ziquan Wang,Elias B. Khalil,Birsen Donmez,Guangkai Qiao,Shekhar Kumar
出处
期刊:Transportation Research Record [SAGE]
卷期号:2676 (10): 670-681 被引量:51
标识
DOI:10.1177/03611981221090937
摘要

In-vehicle infotainment systems can increase cognitive load and impair driving performance. These effects can be alleviated through interfaces that can assess cognitive load and adapt accordingly. Eye-tracking and physiological measures that are sensitive to cognitive load, such as pupil diameter, gaze dispersion, heart rate (HR), and galvanic skin response (GSR), can enable cognitive load estimation. The advancement in cost-effective and nonintrusive sensors in wearable devices provides an opportunity to enhance driver state detection by fusing eye-tracking and physiological measures. As a preliminary investigation of the added benefits of utilizing physiological data along with eye-tracking data in driver cognitive load detection, this paper explores the performance of several machine learning models in classifying three levels of cognitive load imposed on 33 drivers in a driving simulator study: no external load, lower difficulty 1-back task, and higher difficulty 2-back task. We built five machine learning models, including k-nearest neighbor, support vector machine, feedforward neural network, recurrent neural network, and random forest (RF) on (1) eye-tracking data only, (2) HR and GSR, (3) eye-tracking and HR, (4) eye-tracking and GSR, and (5) eye-tracking, HR, and GSR. Although physiological data provided 1%–15% lower classification accuracies compared with eye-tracking data, adding physiological data to eye-tracking data increased model accuracies, with an RF classifier achieving 97.8% accuracy. GSR led to a larger boost in accuracy (29.3%) over HR (17.9%), with the combination of the two factors boosting accuracy by 34.5%. Overall, utilizing both physiological and eye-tracking measures shows promise for driver state detection applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
埋头赶路应助YYY采纳,获得10
1秒前
3秒前
Xueanliu发布了新的文献求助10
4秒前
Ava应助古德day采纳,获得10
4秒前
羽翼发布了新的文献求助10
5秒前
xiaomi完成签到,获得积分10
5秒前
是盐的学术号吖完成签到 ,获得积分10
7秒前
8秒前
10秒前
keke完成签到,获得积分10
10秒前
领导范儿应助Song采纳,获得10
11秒前
迷人雪碧发布了新的文献求助10
11秒前
丽丽完成签到,获得积分10
11秒前
饶渔完成签到,获得积分20
11秒前
Xueanliu完成签到,获得积分10
11秒前
11秒前
脑洞疼应助机智的凡梦采纳,获得10
12秒前
迪迪发布了新的文献求助10
12秒前
13秒前
浮游应助ss采纳,获得10
13秒前
jreeylee发布了新的文献求助30
14秒前
清蒸深海鱼完成签到,获得积分10
14秒前
14秒前
大个应助wzchmm采纳,获得10
15秒前
15秒前
claudefatum完成签到,获得积分10
16秒前
16秒前
认真的rain发布了新的文献求助10
16秒前
羽翼完成签到,获得积分10
16秒前
小十一完成签到 ,获得积分10
16秒前
17秒前
大模型应助阔达雁采纳,获得20
19秒前
19秒前
光亮的万天完成签到 ,获得积分10
19秒前
thia完成签到,获得积分10
21秒前
小乐儿~发布了新的文献求助10
21秒前
LLY发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643332
求助须知:如何正确求助?哪些是违规求助? 4761047
关于积分的说明 15020601
捐赠科研通 4801687
什么是DOI,文献DOI怎么找? 2566980
邀请新用户注册赠送积分活动 1524786
关于科研通互助平台的介绍 1484372