解算器
数学优化
约束(计算机辅助设计)
背景(考古学)
预算约束
简单(哲学)
光学(聚焦)
计算机科学
数学
光学
物理
认识论
新古典经济学
哲学
古生物学
经济
生物
几何学
作者
F. A. Vaz,Yuri Lavinas,Claus Aranha,Marcelo Ladeira
出处
期刊:Cornell University - arXiv
日期:2020-11-19
标识
DOI:10.48550/arxiv.2011.09722
摘要
Finding good solutions for Multi-objective Optimization (MOPs) Problems is\nconsidered a hard problem, especially when considering MOPs with constraints.\nThus, most of the works in the context of MOPs do not explore in-depth how\ndifferent constraints affect the performance of MOP solvers. Here, we focus on\nexploring the effects of different Constraint Handling Techniques (CHTs) on\nMOEA/D, a commonly used MOP solver when solving complex real-world MOPs.\nMoreover, we introduce a simple and effective CHT focusing on the exploration\nof the decision space, the Three Stage Penalty. We explore each of these CHTs\nin MOEA/D on two simulated MOPs and six analytic MOPs (eight in total). The\nresults of this work indicate that while the best CHT is problem-dependent, our\nnew proposed Three Stage Penalty achieves competitive results and remarkable\nperformance in terms of hypervolume values in the hard simulated car design\nMOP.\n
科研通智能强力驱动
Strongly Powered by AbleSci AI