计算机科学
联合学习
机器学习
水准点(测量)
时间序列
人工智能
嵌入
分布式学习
计算
任务(项目管理)
数据挖掘
特征向量
算法
管理
大地测量学
经济
地理
心理学
教育学
作者
Yan Yang,Guozheng Yang,Yan Gao,Cheng Zang,Jiajun Chen,Qiang Wang
标识
DOI:10.1145/3532213.3532238
摘要
Federated learning (FL) ensures multi-party can train a model together while avoiding privacy leakage. Our vertical federated learning (VFL) task tackles the following scenarios: i) all parties share the same sample space but differ in feature space, ii) only one party holds the label data. Our contribution is twofold: i) proposing a novel aggregation strategy to show that embedding learning is qualified to handle the challenge of VFL, ii) Incorporating specific strategy of Secure Multi-party Computation (MPC) into the training phase to remain the dataset at each local machine. We focus on time series scenarios and choose Gated Recurrent Unit (GRU) as our basic algorithm. We evaluate our method on both Google stock data for regression prediction and Kyoto University Benchmark Data for classification prediction to illustrate the performance of the results in terms of computational and communication complexities.
科研通智能强力驱动
Strongly Powered by AbleSci AI