Identifying the Development Trends and Technological Competition Situations for Digital Twin: A Bibliometric Overview and Patent Landscape Analysis

专利分析 竞赛(生物学) 双城 区域科学 数据科学 经济地理学 计算机科学 地理 生态学 生物 大都市区 考古
作者
Xin Li,Yuanfei Shen,Haolun Cheng,Fei Yuan,Lucheng Huang
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:71: 1998-2021 被引量:15
标识
DOI:10.1109/tem.2022.3166794
摘要

Digital twinis increasingly prominent for realizing the digital and intelligent transformation of various industries as an emerging technological means to connect the physical and virtual world. While there has been a recent growth of interest in digital twin in industry, finance, and academia, most relevant studies lack a systematic analysis of the status quo, development trends, and technological competition situations for digital twin. In this article, we used bibliometrics and patent analysis to conduct comprehensive and in-depth research of digital twin by reviewing the current status of academic research and technological development, distribution of countries and institutions, and technological competition situations. We found that academic research and technological development in digital twin are currently in the early stages of rapid growth, which is radiating from applications in smart manufacturing to other scenarios such as medical and health, smart cities, energy, transportation, public emergency, and agricultural food. Artificial intelligence technology, digital twin integrated architecture and system, intelligent real-time control have gradually become the key topics of academic research and technology research and development in the field of digital twin in recent years. The digital framework, sustainable digital twin, deep learning and neural network algorithms, and full lifecycle management have the potential to become technology development trends. USA and Germany are the technology leaders and occupy first-mover advantage at present, while China, the U.K., and South Korea are the powerful chasers in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幺儿小桃酥完成签到,获得积分10
2秒前
2秒前
认真晓灵发布了新的文献求助10
3秒前
mxh完成签到,获得积分10
4秒前
嘚儿塔发布了新的文献求助10
4秒前
紫瓜完成签到,获得积分10
4秒前
星辰大海应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
可靠大神应助背后的采珊采纳,获得10
9秒前
CipherSage应助liuwei采纳,获得10
9秒前
来日昭昭应助娇气的友易采纳,获得10
12秒前
共享精神应助xy采纳,获得10
13秒前
花花521完成签到,获得积分10
14秒前
16秒前
17秒前
CC_200209完成签到,获得积分10
17秒前
认真晓灵完成签到,获得积分10
17秒前
迷路向松完成签到,获得积分10
21秒前
慕青应助karstbing采纳,获得30
22秒前
Frank发布了新的文献求助10
23秒前
嘿嘿完成签到 ,获得积分10
24秒前
24秒前
yuandashazi应助adeno采纳,获得10
25秒前
27秒前
水澈天澜完成签到,获得积分10
27秒前
lilyswift完成签到,获得积分10
28秒前
wanci应助田一点采纳,获得30
28秒前
安内大大完成签到,获得积分20
30秒前
ddli发布了新的文献求助10
31秒前
所所应助土豆侠采纳,获得10
32秒前
32秒前
32秒前
谢1026发布了新的文献求助10
32秒前
DijiaXu应助zhangweny采纳,获得10
32秒前
韩立发布了新的文献求助10
33秒前
孟严青完成签到,获得积分0
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4134889
求助须知:如何正确求助?哪些是违规求助? 3671553
关于积分的说明 11609133
捐赠科研通 3367587
什么是DOI,文献DOI怎么找? 1850039
邀请新用户注册赠送积分活动 913515
科研通“疑难数据库(出版商)”最低求助积分说明 828709