Multi-objective evolutionary algorithm based on decomposition with an external archive and local-neighborhood based adaptation of weights

水准点(测量) 进化算法 初始化 计算机科学 数学优化 算法 帕累托原理 多目标优化 集合(抽象数据类型) 分解 重量 职位(财务) 数学 李代数 生物 生态学 大地测量学 经济 财务 程序设计语言 纯数学 地理
作者
Paulo Pinheiro Junqueira,Ivan Reinaldo Meneghini,Frederico Gadelha Guimarães
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:71: 101079-101079 被引量:19
标识
DOI:10.1016/j.swevo.2022.101079
摘要

Multi-objective evolutionary algorithms (MOEAs) present an interesting approach to solve multi-objective problems (MOPs). Moreover, studies on MOEAs with decomposition approaches have been rapidly growing and many have demonstrated that the distribution of weight vectors plays a key role in obtaining a uniform set of solutions. However, a uniform distribution of weight vectors at the beginning of the evolution may not always result in a uniform set of solutions in the objective space, as the results are highly dependent on the Pareto front shape. Pareto fronts with irregular shape (disconnected, inverted, etc.), are usually not present in all parts of the initial set of weight vectors and one approach to overcome this issue is to adapt the weight vectors to the shape of the Pareto front. To remedy this problem and contribute with the field of study, it is proposed an algorithm based on decomposition that adapts progressively its weight vectors during the evolution process. The algorithm is called Multi-objective Evolutionary Algorithm based on Decomposition with Local-Neighborhood Adaptation (MOEA/D-LNA). To better evaluate the adaptation of weight vectors, a set of benchmark functions with irregular characteristics is proposed through the Generalized Position-Distance (GPD) benchmark generator. Thereafter, the proposed algorithm is compared against other algorithms in the literature on three additional sets of benchmark functions and with two different procedures for the initialization of weight vectors. The experiments have shown promising results on irregular Pareto fronts, specially for disconnected and inverted ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助热心语山采纳,获得10
1秒前
E10100发布了新的文献求助10
1秒前
小许完成签到 ,获得积分10
2秒前
zehua309发布了新的文献求助10
2秒前
jiangzhiyun完成签到,获得积分10
2秒前
jiayou完成签到,获得积分10
2秒前
飞机完成签到,获得积分10
3秒前
4秒前
科研通AI6应助qing采纳,获得30
4秒前
4秒前
keke发布了新的文献求助10
4秒前
4秒前
JSYSM发布了新的文献求助10
5秒前
文静人达发布了新的文献求助10
5秒前
Shark完成签到,获得积分10
6秒前
csl发布了新的文献求助10
7秒前
7秒前
酷波er应助Waiting采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
硕shuo完成签到,获得积分10
10秒前
CHEN发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
14秒前
子卿完成签到,获得积分10
14秒前
李健的小迷弟应助ou采纳,获得10
14秒前
yznfly应助纪外绣采纳,获得50
15秒前
量子星尘发布了新的文献求助10
16秒前
桔子发布了新的文献求助10
16秒前
17秒前
wangbq完成签到 ,获得积分10
18秒前
欢喜的尔冬完成签到,获得积分10
18秒前
Hello应助Lucy采纳,获得10
20秒前
安静的语雪完成签到 ,获得积分10
21秒前
许健完成签到 ,获得积分10
21秒前
认真的小刺猬完成签到,获得积分10
22秒前
科目三应助Nisali采纳,获得10
23秒前
田様应助wanqiaohehehe采纳,获得10
23秒前
yznfly应助麦苗果果采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600873
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843882
捐赠科研通 4678720
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241