Cross-modality synthesis aiding lung tumor segmentation on multi-modal MRI images

模态(人机交互) 分割 计算机科学 人工智能 豪斯多夫距离 模式识别(心理学) 情态动词 图像分割 相似性(几何) 图像(数学) 化学 高分子化学
作者
Jiaxin Li,Houjin Chen,Yanfeng Li,Yahui Peng,Jia Sun,Pan Pan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:76: 103655-103655 被引量:8
标识
DOI:10.1016/j.bspc.2022.103655
摘要

The multi-modal images provide complementary information for the quantitative analysis of the cancer treatment. However, there are some challenges for automatic multi-modal tumor segmentation algorithms, including segmenting the tumors adherent to the normal tissues, the content shift caused from the distinct imaging mechanisms, and high cost of acquiring the paired functional modality images. To alleviate these problems, this paper proposed a multi-modal tumor segmentation model based on the cross-modality synthesis network. The proposed model consists of the cross-modality synthesis network and the multi-modal segmentation network: the cycle-consistent image conditional variational autoencoders (CICVAE) and the residual U-net (Res-Unet), respectively. Trained in a novel semantic cycle-consistency loss, CICVAE model synthesizes the paired auxiliary images solely from the anatomical images, in place of scanning functional images for the multi-modal tumor segmentation. Consequently, these synthesized images display high signal in the tumor region similar to the scans of functional modality but with no content shift. Then the anatomical modality images are concatenated with the synthesized images to Res-Unet for the segmentation of lung tumors. The effectiveness of the proposed generative segmentation model is demonstrated on a T2W-DWI MRI dataset of 57 patients with 355 slices. Compared with other multi-modal segmentation methods, Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (95HD) of the proposed model on testing sets are improved by 3.14% and 4.89%, respectively. The experimental results show that the proposed model outperforms the single modal segmentation model and achieves competitive results with low model complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方小松完成签到,获得积分10
刚刚
安详靖柏完成签到,获得积分10
刚刚
Lucas应助Ricky采纳,获得30
1秒前
小C完成签到,获得积分10
1秒前
ysssbq完成签到,获得积分10
1秒前
2秒前
Young完成签到,获得积分10
2秒前
zl完成签到 ,获得积分10
2秒前
畅快夏天完成签到,获得积分10
3秒前
hf完成签到,获得积分10
4秒前
菠萝汁完成签到,获得积分10
4秒前
glory_c发布了新的文献求助50
4秒前
卡莎完成签到,获得积分10
4秒前
mtjuice应助www采纳,获得10
5秒前
木易完成签到,获得积分20
5秒前
A溶大美噶完成签到,获得积分10
6秒前
温超完成签到,获得积分10
6秒前
KukudMing完成签到,获得积分10
7秒前
空空留遗憾完成签到,获得积分10
9秒前
oaixlittle完成签到,获得积分0
9秒前
Peak_Chen完成签到,获得积分10
10秒前
宁静完成签到,获得积分10
11秒前
11秒前
zhang完成签到,获得积分10
11秒前
yexing完成签到,获得积分10
11秒前
Chong完成签到,获得积分10
11秒前
雨中客完成签到,获得积分10
11秒前
xiao发布了新的文献求助10
12秒前
四叶草完成签到 ,获得积分10
12秒前
煎锅完成签到,获得积分10
12秒前
乐乐应助ameng采纳,获得10
12秒前
one完成签到 ,获得积分10
12秒前
wxnice完成签到,获得积分10
12秒前
wyblobin完成签到,获得积分10
13秒前
yifei完成签到,获得积分10
13秒前
sherry221完成签到,获得积分10
13秒前
14秒前
123完成签到,获得积分20
14秒前
Ricky发布了新的文献求助30
15秒前
健壮的绿凝完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934678
求助须知:如何正确求助?哪些是违规求助? 3480096
关于积分的说明 11006746
捐赠科研通 3209939
什么是DOI,文献DOI怎么找? 1773977
邀请新用户注册赠送积分活动 860660
科研通“疑难数据库(出版商)”最低求助积分说明 797810