Using spatial neighborhoods for parameter adaptation: An improved success history based differential evolution

计算机科学 适应(眼睛) 差异进化 差速器(机械装置) 人工智能 光学 物理 工程类 航空航天工程
作者
Arka P. Ghosh,Swagatam Das,Asit Kumar Das,Roman Senkerik,Adam Viktorin,Ivan Zelinka,Antonio David Masegosa
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:71: 101057-101057 被引量:5
标识
DOI:10.1016/j.swevo.2022.101057
摘要

• In the Success-History based adaptive DE (SHADE) algorithmic framework, we propose a very basic, yet successful, nearest spatial neighborhood-based adjustment to the adaptation process of the parameters. • Our proposed modifications can be extended to any SHADE-based DE algorithm like L-SHADE (SHADE with linear population size reduction), jSO (L-SHADE with modified mutation) etc. • The effectiveness of the proposed spatial neighborhood based parameter adaptation scheme is showcased on the IEEE Congress on Evolutionary Computation (CEC) 2013, 2014, 2015, and 2017 benchmark suites. • Furthermore, the IEEE CEC 2011 competition on testing evolutionary algorithms on real-world numerical optimization problem benchmark suite is considered. Differential Evolution (DE) has been widely appraised as a simple yet robust population-based, non-convex optimization algorithm primarily designed for continuous optimization. Two important control parameters of DE are the scale factor F , which controls the amplitude of a perturbation step on the current solutions and the crossover rate C r , which limits the mixing of components of the parent and the mutant individuals during recombination. We propose a very simple, yet effective, nearest spatial neighborhood-based modification to the adaptation process of the aforesaid parameters in the Success-History based adaptive DE (SHADE) algorithm. SHADE uses a historical archive of the successful F and C r values to update these parameters and stands out as a very competitive DE variant of current interest. Our proposed modifications can be extended to any SHADE-based DE algorithm like L-SHADE (SHADE with linear population size reduction), jSO (L-SHADE with modified mutation) etc. The enhanced performance of the modified SHADE algorithm is showcased on the IEEE CEC (Congress on Evolutionary Computation) 2013, 2014, 2015, and 2017 benchmark suites by comparing against the DE-based winners of the corresponding competitions. Furthermore, the effectiveness of the proposed neighborhood-based parameter adaptation strategy is demonstrated by using the real-life problems from the IEEE CEC 2011 competition on testing evolutionary algorithms on real-world numerical optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
852应助锂离子采纳,获得10
7秒前
喵喵完成签到,获得积分10
8秒前
8秒前
10秒前
元宵宵完成签到,获得积分10
10秒前
11秒前
13秒前
sfliufighting发布了新的文献求助10
13秒前
小佳子发布了新的文献求助10
13秒前
在水一方应助大海123采纳,获得10
17秒前
害怕的擎宇完成签到,获得积分10
17秒前
高挑的冰露完成签到 ,获得积分10
19秒前
云云完成签到,获得积分10
19秒前
两块二毛完成签到,获得积分10
20秒前
22秒前
22秒前
琪琪完成签到,获得积分10
24秒前
桐桐应助biu我你开心吗采纳,获得10
25秒前
Ava应助sfliufighting采纳,获得10
26秒前
吴向宽发布了新的文献求助10
28秒前
苹果柜子完成签到,获得积分10
30秒前
科研通AI2S应助zgw采纳,获得10
30秒前
blackswan完成签到,获得积分10
31秒前
32秒前
sim发布了新的文献求助10
35秒前
crazyfish完成签到,获得积分10
35秒前
小夜完成签到,获得积分10
35秒前
haha123发布了新的文献求助10
36秒前
dashi完成签到 ,获得积分10
36秒前
37秒前
38秒前
小雨点发布了新的文献求助10
39秒前
二三发布了新的文献求助20
41秒前
xiaoli完成签到,获得积分20
41秒前
haha123完成签到,获得积分10
43秒前
研友_850EYZ发布了新的文献求助10
47秒前
自然的城发布了新的文献求助10
47秒前
48秒前
如意冥茗完成签到 ,获得积分10
49秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
Stem Cells: Scientific Facts and Fiction 3rd Edition 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158022
求助须知:如何正确求助?哪些是违规求助? 3693745
关于积分的说明 11664531
捐赠科研通 3385037
什么是DOI,文献DOI怎么找? 1856871
邀请新用户注册赠送积分活动 918086
科研通“疑难数据库(出版商)”最低求助积分说明 831344