已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimization of train timetables in high-speed railway corridors considering passenger departure time and seat-class preferences

火车 班级(哲学) 运输工程 计算机科学 旅行时间 选择(遗传算法) 模拟 运筹学 工程类 人工智能 地图学 地理
作者
Zhipeng Huang,Zhang Yuzhao,Zhenjiang Zhang,Lixing Yang
出处
期刊:Transportation Letters: The International Journal of Transportation Research [Taylor & Francis]
卷期号:15 (2): 111-128 被引量:8
标识
DOI:10.1080/19427867.2022.2037332
摘要

There are a number of trains running in high-speed railway (HSR) corridors throughout the day, which results in diverse passenger travel choices. Passengers can select their preferred train according to their favorite departure time and seat class based on a fixed train timetable, that is, the selection differences from departure time to seat classes are dramatic. The train timetable determines the distribution of passenger flow on trains, and the requirement distribution in turn affects the train timetable. To address this game relationship, this paper develops a method to optimize uneven running train timetables with a given total number of trains considering passenger departure time and seat-class preferences. We analyze the impact of departure time and seat class on passenger choice behaviors and build a time-space-seat 3-dimensional network to account for these choices. Then, the impedance function of each type of arc in the network is designed. In addition, a bi-level programming model is constructed to optimize the train timetable in the HSR corridor; the upper-level model calculates train departure time, arrival time and dwelling time at each station and determines the assignment of car lists with different seat classes for each train. The lower-level model is used to distribute the passenger flow to each train. Combined with the user equilibrium principle, a complex genetic algorithm embedded with the Frank–Wolfe method is designed to reasonably distribute passenger flows to each train. Finally, we take the Lanzhou-Xi'an HSR as an example to test both the model and the algorithm. The results show that the optimal train timetable can meet the requirements of both seat class and departure time with appropriate solution time limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wch666发布了新的文献求助10
3秒前
Sivan发布了新的文献求助10
4秒前
文明8完成签到,获得积分10
8秒前
___淡完成签到 ,获得积分10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得20
9秒前
orixero应助科研通管家采纳,获得10
9秒前
我是老大应助guan采纳,获得10
13秒前
19秒前
mbf完成签到,获得积分10
22秒前
鲤鱼越越完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
Owen应助mbf采纳,获得10
27秒前
kirirto完成签到,获得积分10
31秒前
快乐排骨汤完成签到 ,获得积分10
33秒前
葱饼完成签到 ,获得积分10
36秒前
41秒前
陆陶缘完成签到 ,获得积分10
42秒前
43秒前
量子星尘发布了新的文献求助10
46秒前
mbf发布了新的文献求助10
47秒前
杪夏二八完成签到 ,获得积分10
48秒前
1分钟前
1分钟前
VDC发布了新的文献求助10
1分钟前
1分钟前
lvpori发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
玩命的纸鹤完成签到 ,获得积分10
1分钟前
海陵吹风鸡完成签到,获得积分10
1分钟前
Zzzzccc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Zzzzccc完成签到,获得积分10
1分钟前
专注寻菱发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
1分钟前
mm完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Semiconductor devices : pioneering papers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862343
求助须知:如何正确求助?哪些是违规求助? 3404881
关于积分的说明 10641787
捐赠科研通 3128110
什么是DOI,文献DOI怎么找? 1725120
邀请新用户注册赠送积分活动 830798
科研通“疑难数据库(出版商)”最低求助积分说明 779453