Prediction Model of Immunosuppressive Medication Non-adherence for Renal Transplant Patients Based on Machine Learning Technology

药丸 医学 支持向量机 心理干预 药物依从性 肾移植 移植 机器学习 计算机科学 内科学 药理学 精神科
作者
Xiao Zhu,Bo Peng,Qifeng Yi,Jia Liu,Yan Jin
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:9: 796424-796424 被引量:14
标识
DOI:10.3389/fmed.2022.796424
摘要

Objectives Predicting adherence to immunosuppressive medication (IM) is important to improve and design future prospective, personalized interventions in Chinese renal transplant patients (RTPs). Methods A retrospective, multicenter, cross-sectional study was performed in 1,191 RTPs from October 2020 to February 2021 in China. The BAASIS was used as the standard to determine the adherence of the patients. Variables of the combined theory, including the general data, the HBM, the TPB, the BMQ, the PSSS and the GSES, were used to build the models. The machine learning (ML) models included LR, RF, MLP, SVM, and XG Boost. The SHAP method was used to evaluate the contribution of predictors to predicting the risk of IM non-adherence in RTPs. Results The IM non-adherence rate in the derivation cohort was 38.5%. Ten predictors were screened to build the model based on the database. The SVM model performed better among the five models, with sensitivity of 0.59, specificity of 0.73, and average AUC of 0.75. The SHAP analysis showed that age, marital status, HBM-perceived barriers, use pill box after transplantation, and PSSS-family support were the most important predictors in the prediction model. All of the models had good performance validated by external data. Conclusions The IM non-adherence rate of RTPs was high, and it is important to improve IM adherence. The model developed by ML technology could identify high-risk patients and provide a basis for the development of relevant improvement measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助jiang采纳,获得50
刚刚
华莉变身发布了新的文献求助10
刚刚
1秒前
正直冰露完成签到 ,获得积分10
3秒前
3秒前
3秒前
yznfly应助碘伏棉棉签采纳,获得20
4秒前
爆米花应助沫笙采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
Owen应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
爱库珀应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
聪明凡之应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
Lny应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
liuzhongyi完成签到,获得积分10
6秒前
aging00发布了新的文献求助10
6秒前
mk91发布了新的文献求助10
7秒前
斯文败类应助1212采纳,获得10
7秒前
7秒前
WanWanYUE完成签到 ,获得积分10
7秒前
所所应助罗Eason采纳,获得10
8秒前
CN1681681完成签到,获得积分10
8秒前
10秒前
wanci应助victormanboy3采纳,获得10
10秒前
乐研客完成签到,获得积分10
10秒前
YOLO完成签到,获得积分10
11秒前
11秒前
胖大星完成签到,获得积分10
12秒前
12秒前
发八篇sci关注了科研通微信公众号
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851