法拉第效率
电解质
电解
电化学
化学
无机化学
电解水
降水
氢
化学工程
电流密度
盐(化学)
电解槽
碳纤维
电化学电池
还原(数学)
碳酸盐
电催化剂
膜
二氧化碳电化学还原
聚合物电解质膜电解
甲醇
质子交换膜燃料电池
电化学电位
电极
可逆氢电极
法拉第电流
作者
Yumin Da,Fan Lü,Wenlong Wang,Rui Jiang,H. Lu,Hongqiang Jin,Ganwen Chen,Chonglai Jiang,Chenrui Ji,Xiang Chen,Tong Zhu,Zhe Wu,Wenxing Chen
标识
DOI:10.1038/s41467-026-68600-3
摘要
Electrochemical CO2 reduction (ECR) in acidic electrolytes minimizes CO2 loss and carbonate formation issues, allowing for high CO2 utilization efficiency and showing good potential for practical CO2 upgrading applications. However, in the membrane-based electrolyzer, the proton transfer efficiency across the membrane from the anolyte to the catholyte is crucial for the stability of the catholyte pH in acidic ECR, especially at high current density and during long-term electrolysis. Here, we investigate the effects of proton transfer efficiency and salt precipitation in different acidic ECR electrolyzer and propose a membrane-free CO2 hydrogenation electrolyzer, which couple CO2 reduction and hydrogen oxidation. This electrolyzer design effectively maintains a stable electrolyte pH during long-term electrolysis, and simultaneously achieves high Faradaic efficiency for HCOOH production, high single-pass carbon utilization efficiency, and a lower cell voltage. At a current density of 100 mA cm-2, the system requires only 1.7 V to achieve a 90% HCOOH Faradaic efficiency and demonstrates stable operation for 208 hours.
科研通智能强力驱动
Strongly Powered by AbleSci AI