纳米器件
费斯特共振能量转移
DNA纳米技术
纳米技术
DNA
核酸
纳米孔
DNA折纸
分子生物物理学
多路复用
材料科学
脱氧核酶
纳米尺度
生物传感器
劈开
极限(数学)
纳米线
核酸检测
A-DNA
化学
纳米结构
能源景观
G-四倍体
蛋白质工程
生物物理学
生物系统
计算机科学
构象变化
肽核酸
核酸结构
纳米生物技术
生物电子学
作者
Emily Tsang,Line Mørkholt Lund,Victoria Birkedal,Kurt V. Gothelf
出处
期刊:ACS Nano
[American Chemical Society]
日期:2026-01-26
标识
DOI:10.1021/acsnano.5c22080
摘要
Dynamic DNA nanodevices, inspired by macroscopic machines, provide a versatile platform for constructing nanoscale mechanisms with specialized functionalities. In this study, we developed a DNA origami-based rotating nanodevice for continuous nucleic acid sensing, achieving a detection limit in the low nanomolar range. The nanodevice exhibits reversibility, enabling multiple rounds of target detection through toehold-mediated strand displacement. This regeneration capability was demonstrated at both the ensemble and single-molecule levels, with the latter offering high-resolution insights into dynamic conformational changes. By exploiting the spatial precision and programmability of DNA origami, we designed two distinct systems: a single-mode device that generates a Förster Resonance Energy Transfer (FRET) signal, and a dual-mode device capable of producing either a FRET or quenched signal, depending on the target detected, and enabling multiplexed measurements. Using these setups both at the ensemble and single-molecule level, we systematically explored various parameters to enhance binding efficiency, providing insights for optimizing and fine-tuning future designs.
科研通智能强力驱动
Strongly Powered by AbleSci AI