马格农
凝聚态物理
角动量
自旋电子学
物理
磁学
自旋(空气动力学)
自旋霍尔效应
钇铁石榴石
电子
铁磁性
自旋极化
量子力学
热力学
作者
J. Omar Ledesma‐Martin,Edgar Galindez‐Ruales,Sachin Krishnia,Felix Fuhrmann,Minh Duc Tran,Rahul Gupta,M. Gasser,Dongwook Go,Akashdeep Kamra,G. Jakob,Yuriy Mokrousov,Mathias Kläui
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-02-14
卷期号:25 (8): 3247-3252
被引量:2
标识
DOI:10.1021/acs.nanolett.4c06056
摘要
In magnetic systems, angular momentum is carried by spin and orbital degrees of freedom. Nonlocal devices, comprising heavy-metal nanowires on magnetic insulators like yttrium iron garnet (YIG), enable angular momentum transport via magnons. These magnons are polarized by spin accumulation at the interface through the spin Hall effect (SHE) and detected via the inverse SHE (iSHE). The processes are generally reciprocal, as demonstrated by comparable efficiencies when reversing injector and detector roles. However, introducing Ru, which enables the orbital Hall effect (OHE), disrupts this reciprocity. In our system, magnons polarized through combined SHE and OHE and detected via iSHE are 35% more efficient than the reverse process. We attribute this nonreciprocity to nonzero spin vorticity, resulting from varying electron drift velocities across the Pt/Ru interface. This study highlights the potential of orbital transport mechanisms in influencing angular momentum transport and efficiency in nonlocal spintronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI