P0340 Endo-Histo Foundational Fusion Model: A Novel Artificial Intelligence Approach for Predicting Histologic Remission and Early Response to Therapy in a Phase 2 Ulcerative Colitis Clinical Trial

医学 溃疡性结肠炎 临床试验 临床研究阶段 内科学 胃肠病学 疾病
作者
Marietta Iacucci,Giovanni Santacroce,Pascual José Claramonte Meseguer,Rocío del Amor,Alfredo Redondo Diéguez,Bisi Bode Kolawole,Utpal Chaudhuri,I Zammarchi,Brian Hayes,R Crotty,Davide Zardo,Yasuharu Maeda,Miguel Puga‐Tejada,Ilaria Ditonno,Valentina Vadori,Louise Burke,Klaus Gottlieb,Carolyn Owen,William Eastman,Subrata Ghosh
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:19 (Supplement_1): i806-i807 被引量:1
标识
DOI:10.1093/ecco-jcc/jjae190.0514
摘要

Abstract Background Artificial Intelligence (AI)- enabled endoscopy and histology offer accurate, objective, and rapid assessment of disease activity in Ulcerative Colitis (UC). Emerging multi-source AI models integrating diverse datasets may enhance standardised disease evaluation and outcome prediction. This study aimed to develop a novel AI model fusing endoscopic and histological findings to improve the assessment of disease remission and predict early response to therapy in UC clinical trials. Methods A novel multimodal AI fusion algorithm was developed by integrating paired endoscopic videos and histological whole-slide images (WSIs) from the phase 2 clinical trial of Mirikizumab in UC (NCT02589665). The endoscopy branch of the model was trained with 291 white-light videos, using a convolutional neural network to select informative frames and the BioMedCLIP foundational model to extract features. The histology branch utilised the CONCH foundational model and was fine-tuned on 291 WSIs to obtain patch-level features. Features from both modalities were aggregated and fused using multi-head self-attention. The model’s ability to assess histological remission and response to therapy at weeks 12 and 52 was evaluated. Histological remission was defined as Geboes ≤2B.0, while a response to therapy at different time points was based on histological remission or improvement (Geboes <3.1). Results The fusion model outperformed single-modality assessments for histological remission, achieving a sensitivity of 89.72% (95% CI: 82.35–94.76), specificity of 89.67% (95% CI: 84.34–93.67), and accuracy of 89.69% (95% CI: 85.61–92.94). It demonstrated remarkable performance in assessing response to therapy at 12 and 52 weeks, with sensitivity of 97.96% (95% CI: 89.15–99.95), specificity of 86.84% (95% CI: 71.91–95.59) and accuracy of 93.10% (95% CI 85.59 – 97.43) for histological remission at week 52. Substantial agreement was observed between the AI fusion model and central readout. Conclusion This innovative multimodal fusion AI model enhances the assessment of histological remission and accurately predicts response to therapy. By potentially standardising central readouts and enabling automated disease assessment, this novel tool marks a significant advancement towards precision medicine in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清梦完成签到 ,获得积分20
刚刚
刚刚
二胡发布了新的文献求助20
刚刚
研友_qZA4Gn完成签到,获得积分10
1秒前
Amandar发布了新的文献求助10
2秒前
英姑应助大哥爱发文章采纳,获得10
3秒前
White.K发布了新的文献求助10
3秒前
bkagyin应助邱丽膏采纳,获得10
4秒前
4秒前
王俊博完成签到,获得积分10
4秒前
4秒前
4秒前
橙子发布了新的文献求助10
4秒前
Moon完成签到 ,获得积分10
6秒前
6秒前
6秒前
KKK发布了新的文献求助10
6秒前
BIGWEI完成签到,获得积分10
7秒前
科研通AI6应助Promise采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
10秒前
英姑应助科研螺丝采纳,获得10
10秒前
亦屿森发布了新的文献求助10
10秒前
蒙哥卡恩发布了新的文献求助10
10秒前
鱼儿乐园完成签到 ,获得积分10
10秒前
rose发布了新的文献求助10
10秒前
义气谷兰发布了新的文献求助10
10秒前
10秒前
一个小太阳鸭完成签到,获得积分10
11秒前
11秒前
Yuki酱发布了新的文献求助10
12秒前
12秒前
崛宸完成签到,获得积分10
12秒前
凉风有幸发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940598
求助须知:如何正确求助?哪些是违规求助? 4206660
关于积分的说明 13075122
捐赠科研通 3985245
什么是DOI,文献DOI怎么找? 2182099
邀请新用户注册赠送积分活动 1197724
关于科研通互助平台的介绍 1110019