Research on Marketing Prediction Model for Cross-Border E-Commerce Enterprises Based on Artificial Intelligence Algorithms

盈利能力指数 规范化(社会学) 计算机科学 禁忌搜索 市场情报 市场营销策略 营销 Boosting(机器学习) 机器学习 数字营销 市场调研 人工智能 数据挖掘 业务 财务 社会学 人类学
作者
Y. Kang
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425402578
摘要

Understanding consumer behavior and predicting market trends are critical for enterprises looking to advance their innovation in the rapidly changing world of Cross-border E-commerce (CBEC). To advance the logistical facility occurrence for consumers and optimize inventory organization, e-commerce businesses are focused on using Artificial Intelligence (AI) approach to amplify the accuracy of sales prediction. This study proposes a marketing prediction model that employs Enhanced Tabu Search Optimized Dynamic Gradient Boosting Machines (ETSO-DGBM) to aid CBEC businesses in building enhanced assessments. The CBEC enterprises’ data were collected and used for predicting their marketing approach. To advance the capability of the model to predict, pre-processing procedures, including normalization, are used to certify data stability and Independent Component Analysis (ICA) assists in extracting features. The result illustrates that the ETSO-DGBM marketing prediction model develops forecasting accuracy significantly. When assessing with traditional techniques, the proposed ETSO-DGBM model performs better. The method assists organizations in predicting their marketing strategy to gather the diverse demands of different segments by providing perceptive information about customer behavior. It uses AI approach to extend adaptable marketing programs for CBEC companies, facilitating informed decision-making and promoting expansion and profitability in international markets. It underscores the significance of AI in marketing strategies to handle cross-border customer behavior.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Liooo发布了新的文献求助10
2秒前
2秒前
田様应助hylimeng采纳,获得10
2秒前
靓丽不评发布了新的文献求助30
2秒前
勤奋隶应助GUANG采纳,获得10
4秒前
fc小肥杨完成签到,获得积分10
4秒前
要开心完成签到,获得积分10
4秒前
情殇完成签到,获得积分20
4秒前
科研通AI5应助chara采纳,获得10
5秒前
邓博发布了新的文献求助10
5秒前
清爽鸡翅完成签到 ,获得积分20
5秒前
6秒前
6秒前
落尘完成签到,获得积分10
7秒前
天天快乐应助TsCl17采纳,获得10
7秒前
Oying完成签到,获得积分10
7秒前
萌酱完成签到,获得积分10
7秒前
小希完成签到,获得积分10
8秒前
于歓发布了新的文献求助10
8秒前
8秒前
科研通AI5应助pbj采纳,获得10
8秒前
隐形曼青应助pbj采纳,获得10
8秒前
花花发布了新的文献求助10
8秒前
9秒前
我劝告了风完成签到,获得积分10
9秒前
pebble完成签到,获得积分10
10秒前
10秒前
pfshan完成签到,获得积分10
10秒前
bkagyin应助追寻代真采纳,获得10
11秒前
11秒前
辰辰羽发布了新的文献求助10
11秒前
lieven发布了新的文献求助20
11秒前
爱笑子默完成签到,获得积分10
11秒前
Novice6354发布了新的文献求助10
11秒前
12秒前
oldooog完成签到,获得积分10
12秒前
我是老大应助wenjiejiang采纳,获得10
12秒前
一颗杨梅完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926