基因敲除
体重指数1
小发夹RNA
癌症研究
癌基因
肝细胞癌
细胞培养
RNA干扰
细胞生长
生物
化学
核糖核酸
细胞生物学
细胞
细胞周期
干细胞
生物化学
基因
遗传学
作者
Tong Wu,Weina Chen,Jinqiang Zhang,Wenbo Ma,Nianli Liu
标识
DOI:10.1158/1541-7786.mcr-24-0362
摘要
Abstract Methyltransferase-like 3 (METTL3) is a primary RNA methyltransferase that catalyzes N6-methyladenosine (m6A) modification. The current study aims to further delineate the effect and mechanism of METTL3 in hepatocellular carcinoma (HCC). By using a murine model of hepatocellular cancer development induced via hydrodynamic tail vein injection, we showed that METTL3 enhanced HCC development. In cultured human HCC cell lines (Huh7 and PLC/PRF/5), we observed that stable knockdown of METTL3 by shRNA significantly decreased tumor cell proliferation, colony formation and invasion, in vitro. When Huh7 and PLC/PRF/5 cells with shRNA knockdown of METTL3 were inoculated into the livers of SCID mice, we found that METTL3 knockdown significantly inhibited the growth of HCC xenograft tumors. These findings establish METTL3 as an important oncogene in HCC. Through N6-methyladenosine-sequencing (m6A-Seq), RNA sequencing (RNA-Seq) and subsequent validation studies, we identified BMI1 and RNF2, two key components of the polycomb repressive complex 1 (PRC1), as direct downstream targets of METTL3-mediated m6A modification in HCC cells. Our data indicated that METTL3 catalyzed m6A modification of BMI1 and RNF2 mRNAs which led to increased mRNA stability via the m6A reader proteins IGF2BP1/2/3. Furthermore, we showed that the METTL3 inhibitor, STM2457, significantly inhibited HCC cell growth in vitro and in mice. Collectively, this study provides novel evidence that METTL3 promotes HCC development and progression through m6A modification of BMI1 and RNF2. Our findings suggest that the METTL3-m6A-BMI1/RNF2 signaling axis may represent a new therapeutic target for the treatment of HCC. Implications: The METTL3-m6A-BMI1/RNF2 signaling axis promotes HCC development and progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI