Deepmol: an automated machine and deep learning framework for computational chemistry

计算机科学 管道(软件) 领域(数学) 人工智能 领域(数学分析) 文档 水准点(测量) 机器学习 特征(语言学) 特征工程 软件可移植性 数据科学 软件工程 深度学习 程序设计语言 数学分析 语言学 哲学 数学 大地测量学 纯数学 地理
作者
João Correia,João Capela,Miguel Rocha
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:16 (1)
标识
DOI:10.1186/s13321-024-00937-7
摘要

The domain of computational chemistry has experienced a significant evolution due to the introduction of Machine Learning (ML) technologies. Despite its potential to revolutionize the field, researchers are often encumbered by obstacles, such as the complexity of selecting optimal algorithms, the automation of data pre-processing steps, the necessity for adaptive feature engineering, and the assurance of model performance consistency across different datasets. Addressing these issues head-on, DeepMol stands out as an Automated ML (AutoML) tool by automating critical steps of the ML pipeline. DeepMol rapidly and automatically identifies the most effective data representation, pre-processing methods and model configurations for a specific molecular property/activity prediction problem. On 22 benchmark datasets, DeepMol obtained competitive pipelines compared with those requiring time-consuming feature engineering, model design and selection processes. As one of the first AutoML tools specifically developed for the computational chemistry domain, DeepMol stands out with its open-source code, in-depth tutorials, detailed documentation, and examples of real-world applications, all available at https://github.com/BioSystemsUM/DeepMol and https://deepmol.readthedocs.io/en/latest/ . By introducing AutoML as a groundbreaking feature in computational chemistry, DeepMol establishes itself as the pioneering state-of-the-art tool in the field. Scientific contribution DeepMol aims to provide an integrated framework of AutoML for computational chemistry. DeepMol provides a more robust alternative to other tools with its integrated pipeline serialization, enabling seamless deployment using the fit, transform, and predict paradigms. It uniquely supports both conventional and deep learning models for regression, classification and multi-task, offering unmatched flexibility compared to other AutoML tools. DeepMol's predefined configurations and customizable objective functions make it accessible to users at all skill levels while enabling efficient and reproducible workflows. Benchmarking on diverse datasets demonstrated its ability to deliver optimized pipelines and superior performance across various molecular machine-learning tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LMY完成签到 ,获得积分10
1秒前
LNE发布了新的文献求助10
4秒前
科研小白发布了新的文献求助10
4秒前
Shelley发布了新的文献求助10
6秒前
郝富完成签到,获得积分10
6秒前
枫叶的脚步完成签到,获得积分10
6秒前
8秒前
小先生完成签到,获得积分10
9秒前
11秒前
天天快乐应助称心寒松采纳,获得10
12秒前
lily336699发布了新的文献求助10
12秒前
ZHH发布了新的文献求助10
12秒前
vv发布了新的文献求助20
14秒前
北海完成签到 ,获得积分10
14秒前
14秒前
15秒前
vespa完成签到,获得积分10
15秒前
一二三发布了新的文献求助10
16秒前
LNE完成签到,获得积分10
16秒前
dddd发布了新的文献求助10
18秒前
新闻联播完成签到,获得积分10
18秒前
19秒前
hhan发布了新的文献求助10
19秒前
无畏完成签到 ,获得积分10
20秒前
一口吃三个月亮完成签到,获得积分10
23秒前
一二三完成签到,获得积分20
24秒前
Hero完成签到,获得积分10
25秒前
25秒前
称心寒松发布了新的文献求助10
26秒前
小羊完成签到 ,获得积分10
28秒前
28秒前
29秒前
受伤的豁完成签到 ,获得积分10
30秒前
维生素完成签到,获得积分10
30秒前
31秒前
34秒前
35秒前
35秒前
789完成签到,获得积分20
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745