Multi-UAV Obstacle Avoidance and Formation Control in Unknown Environments

避障 避碰 控制(管理) 计算机科学 障碍物 控制理论(社会学) 人工智能 移动机器人 机器人 计算机安全 地理 考古 碰撞
作者
Yawen Li,Pengfei Zhang,Zhongliu Wang,Dian Rong,Mal'tseva NIu,Cong Liu
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (12): 714-714
标识
DOI:10.3390/drones8120714
摘要

To address the issues of local minima, target unreachability, and significant formation disruption during obstacle avoidance in the conventional artificial potential field (APF), a control approach that integrates APF with optimal consensus control which can achieve cooperative obstacle avoidance is proposed. Based on the double integrator multi-UAV formation model with a fixed undirected communication topology, the optimal consensus control protocol incorporating an obstacle avoidance cost function is introduced. This addresses the limitations of APF-based obstacle avoidance while simultaneously managing multi-UAV formation control. Training interactions in randomly generated unknown obstacle environments are conducted using Random Search for Hyperparameter Optimization (RSHO). Combined with the evaluation model, select the optimal solution of the consensus performance index, control consumption performance index, and obstacle avoidance performance index parameters of the multi-UAV formation control system. Furthermore, a virtual repulsive potential field is designed for each UAV to prevent inter-UAV collisions during obstacle avoidance. Simulation results show that the improved APF (IAPF) with optimal consensus control effectively overcomes the limitations of conventional APF. It achieves multi-UAV formation obstacle avoidance control in unknown environments and avoids the phenomenon of inter-UAV collisions during the obstacle avoidance process while maintaining formation integrity, accelerating formation reconfiguration and convergence, reducing consensus consumption and control loss due to obstacle avoidance, shortening mission time, and enhancing obstacle avoidance efficiency, highlighting the superiority of multi-UAV formation obstacle avoidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎嘎发布了新的文献求助10
刚刚
刚刚
1秒前
111发布了新的文献求助10
2秒前
shz8012发布了新的文献求助10
2秒前
打打应助歌尔德蒙采纳,获得10
2秒前
骜111完成签到,获得积分10
2秒前
希望天下0贩的0应助江波采纳,获得10
3秒前
3秒前
3秒前
有魅力雨旋完成签到,获得积分10
4秒前
1213完成签到,获得积分10
4秒前
充电宝应助潇飞天下采纳,获得10
5秒前
6秒前
7秒前
amanda发布了新的文献求助10
7秒前
FashionBoy应助幽悠梦儿采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
嘎嘎嘎完成签到,获得积分10
8秒前
yatuitui完成签到,获得积分10
8秒前
现代的无春完成签到,获得积分10
9秒前
流霜完成签到 ,获得积分10
9秒前
沉默傲芙完成签到 ,获得积分10
9秒前
9秒前
fanpengzhen完成签到,获得积分10
10秒前
Hello应助端庄断秋采纳,获得10
11秒前
shz8012完成签到,获得积分10
11秒前
11秒前
JamesPei应助wenqin采纳,获得10
11秒前
鲫鱼丸丸饼完成签到,获得积分10
12秒前
FashionBoy应助谦让夜香采纳,获得10
12秒前
12秒前
manny完成签到,获得积分10
13秒前
14秒前
英俊的铭应助闪闪的夜阑采纳,获得10
14秒前
慕青应助Wendy0911采纳,获得10
14秒前
dd33完成签到,获得积分10
14秒前
gqp完成签到,获得积分10
15秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Key Questions in Second Language Acquisition 500
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3873370
求助须知:如何正确求助?哪些是违规求助? 3415654
关于积分的说明 10695295
捐赠科研通 3139870
什么是DOI,文献DOI怎么找? 1732415
邀请新用户注册赠送积分活动 835401
科研通“疑难数据库(出版商)”最低求助积分说明 781967