Insights into multi-scale structural evolution and dielectric response of poly(methyl acrylate) under pre-strain: A simulation study

介电响应 材料科学 丙烯酸甲酯 电介质 拉伤 比例(比率) 丙烯酸酯 复合材料 物理 聚合物 光电子学 生物 共聚物 量子力学 解剖
作者
Han Qin,Tao Liu,Zhaoyuan Liu,Meng Guo,Ying Guo,Ming Tian
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:161 (22)
标识
DOI:10.1063/5.0238343
摘要

The structural evolution of dielectric elastomer induced by pre-strain is a complex, multi-scale process that poses a significant challenge to a deep understanding of the effect of pre-strain. Through simulation results, we identify the variation in the dielectric constant and multi-scale (electronic structure, molecular chain conformation, and aggregation structure) response of poly(methyl acrylate). As the pre-strain increases, the dielectric constant initially rises (below 200% pre-strain) and then declines (above 200% pre-strain). Analysis of the charge distribution, surface electrostatic potential, HOMO–LUMO bandgap, and electron density differences reveal that adjusting chain conformation appropriately could enhance polarity domain and electron polarization. The correlation between permittivity and segment dynamics of deformed molecules is explored, encompassing segment orientation, mean shift displacement, and diffusion coefficient. Following molecular chain orientation, the kinematic capability of the chain segment improves, which leads to an increase in the number and activity of effective dipoles and the enhancement of orientation polarization. Excessive stretching restricts the polymer molecular chain mechanically, reducing the number and activity of effective dipoles and negatively impacting electron polarization. The permittivity transitions from isotropic to anisotropic behavior when the system is subjected to strain. This study provides an interesting solution for research on multiscale responses and intrinsic mechanisms of pre-strain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIKI0807完成签到,获得积分10
刚刚
hahada完成签到,获得积分10
刚刚
刚刚
嘿嘿发布了新的文献求助10
1秒前
乖拉完成签到,获得积分10
1秒前
成就的凡松完成签到,获得积分10
1秒前
1秒前
1秒前
所所应助小蓝采纳,获得10
1秒前
zombie完成签到,获得积分10
2秒前
wannna发布了新的文献求助10
2秒前
悦耳从彤完成签到,获得积分10
2秒前
2秒前
妩媚的舞仙完成签到,获得积分10
2秒前
3秒前
可yi完成签到,获得积分10
3秒前
Running发布了新的文献求助30
3秒前
4秒前
领导范儿应助曹沛岚采纳,获得10
4秒前
时尚寄真完成签到,获得积分10
5秒前
llk完成签到,获得积分10
5秒前
迅速的婷冉完成签到,获得积分10
5秒前
含蓄元冬完成签到 ,获得积分10
5秒前
通讯录三号完成签到 ,获得积分10
5秒前
SciGPT应助HAHA采纳,获得10
5秒前
Qiuju完成签到,获得积分10
6秒前
DreamMaker完成签到,获得积分10
6秒前
Once完成签到,获得积分10
6秒前
大方梦秋完成签到,获得积分10
6秒前
wdm发布了新的文献求助10
6秒前
6秒前
eiland完成签到,获得积分10
6秒前
dae完成签到 ,获得积分10
6秒前
sonjsnd完成签到,获得积分10
7秒前
7秒前
愉快的孤容完成签到,获得积分10
8秒前
8秒前
zcious完成签到,获得积分10
9秒前
无花果应助Rhea采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482836
求助须知:如何正确求助?哪些是违规求助? 4583525
关于积分的说明 14390528
捐赠科研通 4512908
什么是DOI,文献DOI怎么找? 2473262
邀请新用户注册赠送积分活动 1459272
关于科研通互助平台的介绍 1432886