亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Based Prediction of 28-Day Mortality in ECMO Patients: A Pilot Study Using MIMIC-IV Database

数据库 计算机科学 医学 人工智能
作者
Zhe Li,Qiu Guozheng,Duan Wenlong,Lei Shi,Chen Shengxin,Lyu Liwen
出处
期刊:American Surgeon [SAGE]
卷期号:: 31348251394273-31348251394273
标识
DOI:10.1177/00031348251394273
摘要

Background Extracorporeal membrane oxygenation (ECMO) is a critical life-sustaining intervention for patients with severe cardiac or respiratory failure. Predicting outcomes for ECMO patients remains challenging due to the dynamic and complex nature of ECMO therapy. Machine learning (ML) has emerged as a powerful tool for improving prognostication in critical care by integrating large volumes of clinical data to identify complex, nonlinear relationships between variables. Its ability to model complex interactions holds promise for more accurate and personalized risk assessments in ECMO patients. Methods This retrospective study utilized data from the MIMIC-IV v3.1 database, including 162 ECMO-treated patients, to develop machine learning models for predicting 28-day mortality. LASSO regression was first used for feature selection, after which machine learning algorithms, such as logistic regression, Random Forest, XGBoost, decision tree, and support vector machine (SVM), were applied. Model performance was evaluated using area under the curve (AUC), calibration curves, and decision curve analysis (DCA). Results The Random Forest model achieved the highest performance with an AUC of 0.852 (95% CI: 0.745-0.959), outperforming other models. Key predictors identified through LASSO included ACT, age, and MAP, all of which were significantly associated with 28-day mortality. DCA indicated that the Random Forest model provided substantial net clinical benefit, supporting its utility in real-world decision-making. Conclusion Machine learning models, particularly Random Forest, demonstrate substantial potential for improving the prediction of mortality in ECMO patients. By integrating dynamic clinical variables, ML offers a more accurate and individualized approach to risk stratification in this critically ill population. Future research should focus on multi-center validation, the inclusion of genomic data, and the development of time-series models to further enhance predictive performance and clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
20秒前
lsl应助科研通管家采纳,获得10
20秒前
lsl应助科研通管家采纳,获得10
20秒前
lsl应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
佳佳发布了新的文献求助10
50秒前
鳗鱼忆山完成签到 ,获得积分10
54秒前
佳佳完成签到,获得积分20
1分钟前
1分钟前
无无完成签到 ,获得积分10
1分钟前
1分钟前
小A同学发布了新的文献求助10
1分钟前
小A同学完成签到,获得积分10
2分钟前
汉堡包应助aydidar采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
2分钟前
HC发布了新的文献求助10
2分钟前
aydidar发布了新的文献求助10
2分钟前
2分钟前
ding应助HC采纳,获得30
2分钟前
领导范儿应助Ruby采纳,获得10
2分钟前
2分钟前
linkman发布了新的文献求助50
2分钟前
3分钟前
3分钟前
陳.发布了新的文献求助10
3分钟前
十二发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Xhnz发布了新的文献求助10
3分钟前
3分钟前
十二完成签到,获得积分20
3分钟前
3分钟前
Ruby发布了新的文献求助10
3分钟前
zpli完成签到 ,获得积分10
3分钟前
lsl应助科研通管家采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
陈小子完成签到 ,获得积分10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004