The Development and Validation of Multivariable Electronic Health Record-Based Models to Predict Diabetic Ketoacidosis-Related Hospitalizations for Adults with Type 1 Diabetes

作者
Jacob Kohlenberg,Meng Xu,Ryan Coopergard,Erika S. Helgeson,Amy C. Gross,Nestoras Mathioudakis,Craig A. Vandervelden,Mark A. Clements,Lisa S. Chow,Sisi Ma
出处
期刊:Diabetes Technology & Therapeutics [Mary Ann Liebert]
标识
DOI:10.1177/15209156251387161
摘要

Aim: To develop and validate models that use electronic health record (EHR) data to predict diabetic ketoacidosis (DKA)-related hospitalizations over 90 and 180 days among adults with type 1 diabetes (T1D). Methods: We used EHR data from adults with T1D treated at an academic health system in the United States, between January 1, 2017, and April 30, 2023. Models were built to predict the 90- and 180-day DKA risk using EHR data from the 2 years preceding the index date. We constructed seven predictors: (1) prior DKA event, (2) number of prior DKA events, (3) average time between DKA events in years, (4) time since the most recent DKA event in years, (5) most recent HbA1c, (6) the absence of a HbA1c result in the past 2 years, and (7) insurance type. The dataset was split into discovery and prospective validation cohorts. Logistic regression models were built using the discovery cohort and validated using the prospective validation cohort. Results: Our dataset included 7798 adults with T1D, of which 667 (8.6%) experienced ≥1 post-T1D diagnosis DKA event, totaling 1102 DKA events. The 90-day model achieved a mean area under the receiver operating characteristic curve (AUC) of 0.87 (standard deviation [SD] ± 0.02). The 180-day model achieved a mean AUC of 0.84 (SD ± 0.02). Among the 5% highest risk individuals, the 90-day model had a recall of 0.45, precision of 0.11, and specificity of 0.95, while the 180-day model had a recall of 0.42, precision of 0.17, and a specificity of 0.96. Conclusion: We developed EHR-based logistic regression models that effectively predict DKA-related hospitalizations in adults with T1D. Future work will enhance model performance by incorporating additional features and applying advanced machine learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得10
刚刚
完美世界应助bujiachong采纳,获得10
刚刚
王博士发布了新的文献求助10
刚刚
天天完成签到,获得积分10
刚刚
23582发布了新的文献求助10
刚刚
爆米花应助勤奋真采纳,获得10
1秒前
xiadu完成签到 ,获得积分10
1秒前
annevixy完成签到,获得积分10
1秒前
苗条晓霜完成签到 ,获得积分10
1秒前
Ttsn完成签到,获得积分10
1秒前
summer发布了新的文献求助10
2秒前
7788完成签到,获得积分10
2秒前
云归去发布了新的文献求助10
2秒前
xieyuanxing完成签到,获得积分10
2秒前
会撒娇的丹蝶完成签到 ,获得积分10
3秒前
CC完成签到,获得积分10
3秒前
3秒前
3秒前
能干巨人完成签到,获得积分10
3秒前
3秒前
4秒前
yh北风发布了新的文献求助10
4秒前
爱小尹完成签到,获得积分10
4秒前
么么蛋完成签到,获得积分10
4秒前
5秒前
zhanzhanzhan完成签到,获得积分10
5秒前
5秒前
MINE完成签到,获得积分10
6秒前
7秒前
lvlv发布了新的文献求助10
7秒前
水心完成签到 ,获得积分10
7秒前
Austin-HL完成签到,获得积分10
7秒前
ccccchen完成签到,获得积分10
8秒前
会撒娇的丹蝶关注了科研通微信公众号
8秒前
上官若男应助miao采纳,获得10
9秒前
wangshibing发布了新的文献求助10
9秒前
9秒前
9秒前
stop here完成签到,获得积分10
9秒前
幽默胜发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665553
求助须知:如何正确求助?哪些是违规求助? 4877312
关于积分的说明 15114485
捐赠科研通 4824825
什么是DOI,文献DOI怎么找? 2582883
邀请新用户注册赠送积分活动 1536919
关于科研通互助平台的介绍 1495370