亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder

计算机科学 自编码 人工智能 模式识别(心理学) 编码器 降噪 假阳性悖论 噪音(视频) 语音识别 条纹 深度学习 操作系统 图像(数学) 物理 光学
作者
Meng Chen,Yongjian Li,Liting Zhang,Lei Liu,Baokun Han,Wenzhuo Shi,Shoushui Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1993-2004 被引量:10
标识
DOI:10.1109/jbhi.2024.3355960
摘要

Electrocardiogram (ECG) signals frequently encounter diverse types of noise, such as baseline wander (BW), electrode motion (EM) artifacts, muscle artifact (MA), and others. These noises often occur in combination during the actual data acquisition process, resulting in erroneous or perplexing interpretations for cardiologists. To suppress random mixed noise (RMN) in ECG with less distortion, we propose a Transformer-based Convolutional Denoising AutoEncoder model (TCDAE) in this study. The encoder of TCDAE is composed of three stacked gated convolutional layers and a Transformer encoder block with a point-wise multi-head self-attention module. To obtain minimal distortion in both time and frequency domains, we also propose a frequency weighted Huber loss function in training phase to better approximate the original signals. The TCDAE model is trained and tested on the QT Database (QTDB) and MIT-BIH Noise Stress Test Database (NSTDB), with the training data and testing data coming from different records. All the metrics perform the most robust in overall noise and separate noise intervals for RMN removal compared with the baseline methods. We also conduct generalization tests on the Icentia11k database where the TCDAE outperforms the state-of-the-art models, with a 55% reduction of the false positives in R peak detection after denoising. The TCDAE model approximates the short-term and long-term characteristics of ECG signals and has higher stability even under extreme RMN corruption. The memory consumption and inference speed of TCDAE are also feasible for its deployment in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gszy1975发布了新的文献求助100
9秒前
杪夏二八完成签到 ,获得积分10
10秒前
雾月发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
MchemG举报田兆鹏求助涉嫌违规
2分钟前
2分钟前
大玲发布了新的文献求助20
2分钟前
George完成签到,获得积分10
3分钟前
鲜艳的天磊完成签到,获得积分10
3分钟前
3分钟前
大玲发布了新的文献求助20
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
大玲完成签到,获得积分10
3分钟前
juan完成签到 ,获得积分10
4分钟前
iorpi完成签到,获得积分10
4分钟前
澄明的晨星完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
爱科学完成签到 ,获得积分10
5分钟前
小二郎应助鲜艳的天磊采纳,获得10
6分钟前
6分钟前
6分钟前
科研佟完成签到 ,获得积分10
7分钟前
cc应助hugeyoung采纳,获得10
7分钟前
明亮的小蘑菇完成签到 ,获得积分10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
crane完成签到,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
9分钟前
爆米花应助科研通管家采纳,获得30
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949974
求助须知:如何正确求助?哪些是违规求助? 3495228
关于积分的说明 11075971
捐赠科研通 3225807
什么是DOI,文献DOI怎么找? 1783226
邀请新用户注册赠送积分活动 867565
科研通“疑难数据库(出版商)”最低求助积分说明 800835