Ultrahigh-Resolution Reconstruction of Shale Digital Rocks from FIB-SEM Images Using Deep Learning

油页岩 地质学 聚焦离子束 矿物学 分辨率(逻辑) 扫描电子显微镜 材料科学 离子 人工智能 计算机科学 复合材料 化学 古生物学 有机化学
作者
Yipu Liang,Sen Wang,Qihong Feng,Mengqi Zhang,Xiaopeng Cao,Xiukun Wang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (03): 1434-1450 被引量:17
标识
DOI:10.2118/218397-pa
摘要

Summary Accurate characterization of shale pore structures is of paramount importance in elucidating the distribution and migration mechanisms of fluids within shale rocks. However, the acquisition of high-resolution (HR) images of shale rocks is limited by the precision of the scanning equipment. Even with higher-precision devices, compromising the image field of view becomes inevitable, making it challenging to faithfully represent the actual conditions of shale. We propose a stepwise 3D super-resolution (SR) reconstruction method for shale digital rocks based on the widely used focused-ion-beam scanning electron microscope (FIB-SEM) technique. This method effectively addresses the issues of inconsistent horizontal and vertical resolutions as well as low 3D image resolution in FIB-SEM images. By adopting this approach, we significantly enhance image details and clarity, enabling successful observations of pores smaller than 10 nm within shale and laying a foundation for further pore-scale flow simulations. Furthermore, we extract the pore network model (PNM) from the SR reconstructed digital rock to analyze the pore size distribution, coordination number, and pore-throat ratio of shale samples from the Jiyang Depression. The results demonstrate a pore radius distribution in the range of 0 nm to 40 nm, which aligns with the results from nitrogen adsorption experiments. Notably, pores with radii smaller than 10 nm account for 50% of the total connected pores. The proportion of isolated pores in the SR reconstructed shale PNM is significantly reduced, with the coordination number mainly distributed between 1 and 4. The pore-throat ratio of shale ranges from 1 to 3, indicating a relatively uniform development of pores and throats. This study introduces a novel method for accurately characterizing the shale pore structure, which aids researchers in evaluating the pore size distribution and connectivity of shales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
littlestone完成签到,获得积分10
刚刚
充电宝应助阳光的道消采纳,获得10
1秒前
合适秋寒完成签到 ,获得积分10
1秒前
桐桐应助Rhannnn采纳,获得10
2秒前
xL关注了科研通微信公众号
6秒前
汉堡包应助企鹅乌云采纳,获得10
9秒前
科目三应助伯劳采纳,获得10
9秒前
搜集达人应助内向煎饼采纳,获得10
10秒前
11秒前
大约在冬季完成签到,获得积分10
13秒前
烟花应助桔梗采纳,获得10
13秒前
研友_Z7gKEZ完成签到,获得积分10
15秒前
飞飞完成签到 ,获得积分10
15秒前
cryscilla完成签到,获得积分10
15秒前
小齐天完成签到,获得积分20
15秒前
16秒前
xx发布了新的文献求助10
16秒前
16秒前
17秒前
旺仔发布了新的文献求助10
17秒前
陈YX关注了科研通微信公众号
17秒前
研友_VZG7GZ应助cryscilla采纳,获得10
20秒前
22秒前
22秒前
呦呦又鹿完成签到,获得积分10
23秒前
24秒前
科研通AI2S应助刻苦大叔采纳,获得10
24秒前
24秒前
拾姑娘的小稻穗给拾姑娘的小稻穗的求助进行了留言
24秒前
田一点完成签到,获得积分10
25秒前
企鹅乌云发布了新的文献求助10
26秒前
阿杜发布了新的文献求助10
27秒前
Orange应助侯谋采纳,获得10
27秒前
28秒前
punker发布了新的文献求助10
29秒前
30秒前
32秒前
大模型应助小齐天采纳,获得30
32秒前
33秒前
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836283
求助须知:如何正确求助?哪些是违规求助? 3378620
关于积分的说明 10505293
捐赠科研通 3098250
什么是DOI,文献DOI怎么找? 1706351
邀请新用户注册赠送积分活动 820987
科研通“疑难数据库(出版商)”最低求助积分说明 772351