Multimodal Physiological Analysis of Impact of Emotion on Cognitive Control in VR

认知 计算机科学 唤醒 分类 价(化学) 认知心理学 人工智能 心理学 神经科学 量子力学 物理
作者
Ming Li,Junjun Pan,Yu Li,Yang Gao,Hong Qin,Yang Shen
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:30 (5): 2044-2054 被引量:6
标识
DOI:10.1109/tvcg.2024.3372101
摘要

Cognitive control is often perplexing to elucidate and can be easily influenced by emotions. Understanding the individual cognitive control level is crucial for enhancing VR interaction and designing adaptive and self-correcting VR/AR applications. Emotions can reallocate processing resources and influence cognitive control performance. However, current research has primarily emphasized the impact of emotional valence on cognitive control tasks, neglecting emotional arousal. In this study, we comprehensively investigate the influence of emotions on cognitive control based on the arousal-valence model. A total of 26 participants are recruited, inducing emotions through VR videos with high ecological validity and then performing related cognitive control tasks. Leveraging physiological data including EEG, HRV, and EDA, we employ classification techniques such as SVM, KNN, and deep learning to categorize cognitive control levels. The experiment results demonstrate that high-arousal emotions significantly enhance users' cognitive control abilities. Utilizing complementary information among multi-modal physiological signal features, we achieve an accuracy of 84.52% in distinguishing between high and low cognitive control. Additionally, time-frequency analysis results confirm the existence of neural patterns related to cognitive control, contributing to a better understanding of the neural mechanisms underlying cognitive control in VR. Our research indicates that physiological signals measured from both the central and autonomic nervous systems can be employed for cognitive control classification, paving the way for novel approaches to improve VR/AR interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张牧之应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得20
2秒前
馆长应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
5秒前
5秒前
5秒前
123完成签到,获得积分20
6秒前
Marvin发布了新的文献求助10
8秒前
现代访梦发布了新的文献求助10
8秒前
8秒前
8秒前
思恩Shen完成签到,获得积分20
8秒前
小蘑菇应助黄哈哈采纳,获得10
9秒前
10秒前
星辰发布了新的文献求助10
11秒前
嘻嘻云发布了新的文献求助10
13秒前
小二郎应助ylj采纳,获得10
13秒前
16秒前
17秒前
NexusExplorer应助清风采纳,获得10
18秒前
19秒前
19秒前
20秒前
恒星的恒心完成签到 ,获得积分10
20秒前
高高的从波完成签到,获得积分10
21秒前
orixero应助年轻新晴采纳,获得10
21秒前
清脆的机器猫完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4752046
求助须知:如何正确求助?哪些是违规求助? 4097183
关于积分的说明 12676784
捐赠科研通 3809896
什么是DOI,文献DOI怎么找? 2103493
邀请新用户注册赠送积分活动 1128715
关于科研通互助平台的介绍 1005619