亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SALI: A Scalable Adaptive Learned Index Framework based on Probability Models

可扩展性 计算机科学 稳健性(进化) 搜索引擎索引 索引(排版) 工作量 吞吐量 集合(抽象数据类型) 并发 数据库索引 数据挖掘 分布式计算 人工智能 数据库 操作系统 生物化学 化学 万维网 无线 基因 程序设计语言
作者
Jiake Ge,Huanchen Zhang,Boyu Shi,Yuanhui Luo,Yunda Guo,Yunpeng Chai,Yuxing Chen,Anqun Pan
标识
DOI:10.1145/3626752
摘要

The growth in data storage capacity and the increasing demands for high performance have created several challenges for concurrent indexing structures. One promising solution is the learned index, which uses a learning-based approach to fit the distribution of stored data and predictively locate target keys, significantly improving lookup performance. Despite their advantages, prevailing learned indexes exhibit constraints and encounter issues of scalability on multi-core data storage. This paper introduces SALI, the Scalable Adaptive Learned Index framework, which incorporates two strategies aimed at achieving high scalability, improving efficiency, and enhancing the robustness of the learned index. Firstly, a set of node-evolving strategies is defined to enable the learned index to adapt to various workload skews and enhance its concurrency performance in such scenarios. Secondly, a lightweight strategy is proposed to maintain statistical information within the learned index, with the goal of further improving the scalability of the index. Furthermore, to validate their effectiveness, SALI applied the two strategies mentioned above to the learned index structure that utilizes fine-grained write locks, known as LIPP. The experimental results have demonstrated that SALI significantly enhances the insertion throughput with 64 threads by an average of 2.04x compared to the second-best learned index. Furthermore, SALI accomplishes a lookup throughput similar to that of LIPP+.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
虚幻元风完成签到 ,获得积分10
3秒前
kalala完成签到,获得积分20
11秒前
顺心靖雁发布了新的文献求助10
17秒前
科研通AI5应助顺心靖雁采纳,获得10
28秒前
47秒前
56秒前
666发布了新的文献求助10
1分钟前
666完成签到,获得积分10
1分钟前
科研通AI5应助范范采纳,获得10
1分钟前
bkagyin应助Chloe采纳,获得10
1分钟前
2分钟前
zhang完成签到 ,获得积分10
2分钟前
范范发布了新的文献求助10
2分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
充电宝应助Chloe采纳,获得10
2分钟前
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
4分钟前
5分钟前
sllytn完成签到,获得积分10
5分钟前
Chloe发布了新的文献求助10
5分钟前
华仔应助poolgreen采纳,获得10
5分钟前
5分钟前
poolgreen完成签到,获得积分10
6分钟前
柴子完成签到 ,获得积分10
6分钟前
orixero应助Chloe采纳,获得10
6分钟前
Panther完成签到,获得积分10
6分钟前
NS发布了新的文献求助10
6分钟前
7分钟前
领导范儿应助科研通管家采纳,获得10
7分钟前
7分钟前
Chloe发布了新的文献求助10
7分钟前
7分钟前
Chloe完成签到,获得积分10
7分钟前
8分钟前
8分钟前
孤独君浩发布了新的文献求助10
8分钟前
CipherSage应助孤独君浩采纳,获得10
8分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251