Predicting diabetic retinopathy stage using Siamese Convolutional Neural Network

糖尿病性视网膜病变 卷积神经网络 可用的 失明 计算机科学 眼底(子宫) 人工智能 眼底摄影 深度学习 人口 糖尿病 医学 验光服务 模式识别(心理学) 眼科 视网膜 多媒体 内分泌学 环境卫生 荧光血管造影
作者
Maria Santos,Carlos Valadão,Cassius Zanetti Resende,Daniel Cruz Cavalieri
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:12 (1) 被引量:2
标识
DOI:10.1080/21681163.2023.2297017
摘要

Diabetic retinopathy (DR) is considered to be a leading cause of blindness in people aged 16 to 64 years, affecting around 40% of the population diagnosed with diabetes mellitus (DM). DR is usually identified through retinal image analysis, and in some countries, such as Brazil, such diagnosis is hindered by limited access to specialized care, leading to lengthy waits for ophthalmological evaluations. This scenario makes the Brazilian Diabetic Society's annual DR check recommendation impractical for many. To address this gap, our study introduces a novel Siamese Convolutional Neural Network (SCNN) for DR prediction, usable by primary care professionals. Our SCNN analyzes pairs of eye fundus images and employs shared weights in its layers to extract essential features, facilitating similarity measurement between neural network outputs. Despite challenges with limited and imbalanced datasets, our SCNN showed effectiveness. We tested it on four datasets (IDRiD, APTOS, Messidor-1, DIARETDB0), with accuracy ranging from 67.23% (APTOS) to 96.85% (DIARETDB0). Compared to other methods, our approach consistently excelled, especially in recall analysis. These results suggest that deep learning via Siamese networks is likely to be a viable and potential DR screening tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小白完成签到,获得积分10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
完美世界应助柏康娜采纳,获得30
1秒前
田様应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
lxlcx应助科研通管家采纳,获得20
2秒前
杨阳洋完成签到,获得积分10
2秒前
浩浩大人发布了新的文献求助10
2秒前
2秒前
3秒前
HK完成签到,获得积分10
4秒前
4秒前
Ava应助斗南03采纳,获得10
4秒前
4秒前
6秒前
yyy发布了新的文献求助10
6秒前
6秒前
SciGPT应助Membranes采纳,获得30
7秒前
7秒前
科研通AI5应助ref:rain采纳,获得10
8秒前
8秒前
烟花应助冷傲海蓝采纳,获得10
9秒前
刘一三完成签到 ,获得积分10
10秒前
10秒前
浩浩大人完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
英姑应助奔流的河采纳,获得10
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358921
关于积分的说明 10398088
捐赠科研通 3076295
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767599