Detection of surface defects for maize seeds based on YOLOv5

人工智能 预处理器 分割 计算机科学 深度学习 模式识别(心理学) 特征(语言学) 特征提取 噪音(视频) 计算机视觉 机器学习 图像(数学) 语言学 哲学
作者
Yu Xia,Tianci Che,Jingwu Meng,Jinghao Hu,Gengle Qiao,Wenbo Liu,Jie Kang,Wei Tang
出处
期刊:Journal of Stored Products Research [Elsevier BV]
卷期号:105: 102242-102242 被引量:3
标识
DOI:10.1016/j.jspr.2023.102242
摘要

The external appearance of maize seeds is one of important quality evaluation indicators for maize seeds. For traditional maize seed appearance quality detection, which mainly relies on naked eyes to inspect surface defects. Although computer vision as a relative mature way can be used for sample appearance quality inspection, manual feature extraction is still required. Meanwhile, machine learning technology, especially deep learning, has developed rapidly in the last decades. The maize seed surface defect detection coupled with deep learning can effectively replace traditional detection methods, reduce manual intervention, and decrease costs. In this paper, the collection and preprocessing of maize seed images, as well as the surface defects evaluation methods of maize seeds using a deep learning framework YOLOv5 were proposed. Firstly, in terms of image acquisition, maize seed batch surface defect detection system was established to obtain images. Then, the quality of maize seed images was improved by filtering, segmentation, and enhancement, which could significantly reduce noise in the images, separate the targets from the background and replace the background. Finally, ECA-Improved-YOLOv5S-Mobilenet model, which was established to improve the feature learning performance, could extracted the features from the maize seeds image and detect defects quickly at different levels. The experimental results showed that the precision was 92.8%, the recall rate was 98.9%, and the mPA0.5 was 95.5% with 8.8 MB of model size. In general, the proposed maize seeds surface defect detection method combined with deep learning could provide a theoretical support and technical basis for future development of seed grading and plantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyc完成签到,获得积分10
刚刚
栗子完成签到,获得积分10
1秒前
tutu完成签到,获得积分10
2秒前
娜娜完成签到,获得积分10
4秒前
4秒前
凶狠的雁芙完成签到,获得积分10
4秒前
传奇3应助跳跃保温杯采纳,获得10
4秒前
冯杰完成签到,获得积分10
5秒前
xiaodudu发布了新的文献求助10
5秒前
不加香菜完成签到 ,获得积分10
5秒前
完美世界应助陈露采纳,获得10
6秒前
ning完成签到,获得积分10
6秒前
Owen应助Warm_Cloud采纳,获得10
6秒前
xs发布了新的文献求助30
6秒前
6秒前
Zhang_BY完成签到 ,获得积分10
7秒前
7秒前
8秒前
faye完成签到,获得积分10
8秒前
汉堡包应助快乐保温杯采纳,获得10
8秒前
8秒前
iNk应助xiaoli245采纳,获得10
9秒前
呆萌幻竹完成签到 ,获得积分10
10秒前
最卷的卷心菜完成签到,获得积分10
10秒前
苗条白枫完成签到 ,获得积分10
10秒前
朝歌完成签到,获得积分10
10秒前
落叶完成签到 ,获得积分10
10秒前
ning发布了新的文献求助20
10秒前
共享精神应助SYY采纳,获得10
11秒前
Ya完成签到 ,获得积分10
12秒前
12秒前
abby123完成签到,获得积分10
12秒前
www完成签到 ,获得积分10
12秒前
科研通AI5应助隐形冬云采纳,获得10
12秒前
无花无酒发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
落后十八完成签到,获得积分10
13秒前
大力捕发布了新的文献求助10
13秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830789
求助须知:如何正确求助?哪些是违规求助? 3373099
关于积分的说明 10478031
捐赠科研通 3093266
什么是DOI,文献DOI怎么找? 1702423
邀请新用户注册赠送积分活动 819040
科研通“疑难数据库(出版商)”最低求助积分说明 771232