双功能
过电位
材料科学
电催化剂
析氧
电负性
密度泛函理论
单层
过渡金属
硫族元素
化学物理
纳米技术
计算化学
物理化学
催化作用
化学
电化学
结晶学
有机化学
电极
作者
Dongying Li,Aodi Zhang,Zhenzhen Feng,Wentao Wang
标识
DOI:10.1021/acsami.3c14995
摘要
Exploring efficient and stable electrocatalysts for the bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is vital to developing renewable energy technologies. However, due to the substantial and intricate design space associated with these bifunctional OER/ORR electrocatalysts, their development presents a formidable challenge, resulting in their cost-prohibitive nature in both experimental and computational studies. Herein, using the defect physics method, we systematically investigate the formation energies and bifunctional overpotential (ηBi) of 4d-transition-metal (4d-TM, 4d-TM = Zr, Nb, Mo, Ru, Rh, Pd, and Ag)-doped monolayer supercell g-C3N4 (4d-TM@C54N72) based on the density functional theory (DFT) calculations. Under N-rich and C-rich conditions, we find that the formation energies of RhN@C54N71 (Rh occupation N) and PdN@C54N71 (Pd occupation N) are smaller than that of other 4d-TMN@C54N71 (4d-TM occupation N site); for the 4d-TMint@C54N72 (4d-TM interstitial site occupation), the lowest-formation energy defects are Pdint@C54N72. These results indicate that they have better stabilities. Interestingly, for these formation energy lower systems, Pd0int@C54N72 (ηBi = 1.00 V) and Rh1+N@C54N71 (ηBi = 0.73 V) have ultralow overpotential and can be great candidates for bifunctional OER/ORR electrocatalysts. We find the reason is that adjusting the charge states of 4d-TM@C54N72 can tune the interaction strength between the oxygenated intermediates and the 4d-TM@C54N72, which plays a crucial role in the activity of reactions. Additionally, the data obtained through machine learning (ML) application suggest that the electronegativity (Nm) and bond length of 4d-TM and coordination atoms (dTM-OOH) are primary descriptors characterizing the OER and ORR activities, respectively. The charged defect tuning of the bifunctional OER/ORR activity for 4d-TM@C54N72 would enable electrocatalytic performance optimization and the development of potential electrocatalysts for renewable energy applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI