Deep neural network for learning wave scattering and interference of underwater acoustics

物理 声学 干扰(通信) 水下 人工神经网络 散射 光学 人工智能 电信 频道(广播) 计算机科学 海洋学 地质学
作者
Wrik Mallik,Rajeev K. Jaiman,Jasmin Jelovica
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:10
标识
DOI:10.1063/5.0188250
摘要

It is challenging to construct generalized physical models of underwater wave propagation owing to their complex physics and widely varying environmental parameters and dynamical scales. In this article, we present a deep convolutional recurrent autoencoder network (CRAN) for data-driven learning of complex underwater wave scattering and interference. We specifically consider the dynamics of underwater acoustic scattering from various non-uniform seamount shapes leading to complex wave interference patterns of back-scattered and forward-propagated waves. The CRAN consists of a convolutional autoencoder for learning low-dimensional system representation and a long short-term memory (LSTM)-based recurrent neural network for predicting system evolution in low dimensions. The convolutional autoencoder enables efficient dimension reduction of wave propagation by independently learning global and localized wave features. To improve the time horizon of wave dynamics prediction, we introduce an LSTM architecture with a single-shot learning mechanism and optimal time-delayed data embedding. On training the CRAN over 30 cases containing various seamount geometries and acoustic source frequencies, we can predict wave propagation up to a time horizon of 5 times the initiation sequence length for 15 out-of-training cases with a mean L2 error of approximately 10%. For selected out-of-training cases, the prediction time horizon could be increased to 6 times the initiation sequence length. Importantly, such predictions are obtained with physically consistent wave scattering and wave interference patterns and at 50% lower L2 error compared to routinely use standard LSTMs. These results demonstrate the potential of employing such deep neural networks for learning complex underwater ocean acoustic propagation physics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助难过盼海采纳,获得10
刚刚
充电宝应助圆潘采纳,获得10
1秒前
度帕明完成签到,获得积分10
1秒前
how发布了新的文献求助10
1秒前
小黄小黄辉煌完成签到,获得积分10
2秒前
3秒前
完美世界应助HH采纳,获得10
3秒前
刘佳辉发布了新的文献求助10
3秒前
3秒前
Qiuju完成签到,获得积分10
3秒前
mmssdd完成签到,获得积分10
3秒前
奖品肉麻膏耶完成签到 ,获得积分10
4秒前
4秒前
yznfly应助sedrakyan采纳,获得50
4秒前
顾矜应助TOKO采纳,获得10
4秒前
fordream完成签到,获得积分10
4秒前
5秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
junxie完成签到,获得积分20
8秒前
infj发布了新的文献求助10
8秒前
踟蹰发布了新的文献求助10
8秒前
泥過完成签到,获得积分10
9秒前
空隙可欣完成签到,获得积分10
9秒前
9秒前
10秒前
新斯的明的明完成签到 ,获得积分10
10秒前
10秒前
咔咔发布了新的文献求助10
11秒前
11秒前
善学以致用应助橘子采纳,获得10
11秒前
11秒前
12秒前
12秒前
Lotuslab发布了新的文献求助10
12秒前
12秒前
12秒前
ZJ完成签到,获得积分10
13秒前
13秒前
郁金香发布了新的文献求助30
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451764
求助须知:如何正确求助?哪些是违规求助? 4559610
关于积分的说明 14273963
捐赠科研通 4483541
什么是DOI,文献DOI怎么找? 2455561
邀请新用户注册赠送积分活动 1446425
关于科研通互助平台的介绍 1422323