Detection of whole body bone fractures based on improved YOLOv7

计算机科学
作者
Junting Zou,Mohd Rizal Arshad
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 105995-105995 被引量:14
标识
DOI:10.1016/j.bspc.2024.105995
摘要

In the field of medical imaging, early and accurate detection of bone fractures can significantly improve the treatment effect of patients. In this study, we conduct a comparative study of one-stage and two-stage deep learning architectures, with a particular focus on their ability to autonomously and accurately localize four different fracture morphologies in the whole body: angle fractures, normal fractures, line fractures, and messed-up angle fractures. Using well-annotated datasets, we explore the capabilities of the frontier models, with a special focus on the YOLO variants (v4, v5, v7, v8 and our improved v7 model), SSD, Faster-RCNN, and Mask-RCNN. To further improve the detection accuracy, we introduce an Enhanced Intersection of Unions (EIoU) loss function to refine the positional differences between the predicted bounding box and the ground truth bounding box. We measure the performance of the models by precision, recall, mAP, and IoU metrics. Our analysis illuminates the strengths and limitations of each model for bone fracture detection and highlights the advances made by integrating the attention mechanism into YOLOv7. Most notably, our customized YOLOv7-ATT model incorporating the attention mechanism significantly outperforms the baseline metrics of the pre-trained model, achieving a mAP of 80.2%. It exhibits excellent generalization on the FracAtlas dataset, achieving a mAP of 86.2%, which is significantly better than the other models. This study provides researchers with a foundational resource aimed at optimizing and deploying deep learning models for fracture detection in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SGQT发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
3秒前
机灵的一笑完成签到,获得积分10
4秒前
结实彤完成签到 ,获得积分10
5秒前
5秒前
搜集达人应助勤恳的绿凝采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助玩是罪恶的采纳,获得10
7秒前
swb发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
CJ完成签到,获得积分10
10秒前
10秒前
大模型应助二个虎牙采纳,获得30
11秒前
研友_VZG7GZ应助辰月采纳,获得10
11秒前
12秒前
黄金时间完成签到,获得积分10
12秒前
矜天完成签到 ,获得积分10
13秒前
monica完成签到,获得积分20
14秒前
14秒前
CJ发布了新的文献求助10
14秒前
任性翠安完成签到 ,获得积分10
14秒前
fnder发布了新的文献求助10
14秒前
delll发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
Vicky发布了新的文献求助10
15秒前
Edward发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
19秒前
19秒前
阿燕发布了新的文献求助10
19秒前
Triaxane应助OYZY采纳,获得10
21秒前
22秒前
22秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881127
求助须知:如何正确求助?哪些是违规求助? 3423469
关于积分的说明 10734465
捐赠科研通 3148486
什么是DOI,文献DOI怎么找? 1737123
邀请新用户注册赠送积分活动 838690
科研通“疑难数据库(出版商)”最低求助积分说明 784050