Sample Pose Augmentation and Adaptive Weight-Based Refinement for 3-D LiDAR-Camera Extrinsic Calibration Using an Orthogonal Trihedron

激光雷达 计算机科学 校准 人工智能 姿势 计算机视觉 点云 标准差 传感器融合 数学 遥感 统计 地质学
作者
You-Jeong Choi,Ju H. Park,Ho-Youl Jung
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:2
标识
DOI:10.1109/tim.2023.3336440
摘要

Light detection and ranging (LiDAR) and cameras are core sensors used in autonomous vehicles and industrial robots. LiDAR-camera fusion systems require an accurate estimation of the relative pose to integrate different sensor data. We propose an offline method for 3-D LiDAR-camera extrinsic calibration using an orthogonal trihedron with checkered patterns on each plane. Our approach for LiDAR pose estimation consists of four steps: background rejection, perpendicularity enforcement, dominant pose decision, and refinement. In the iterations of the first and second steps, several poses are sampled. The sample poses are evaluated and augmented, then the highest scoring sample is determined as the dominant pose. For the refinement, a new loss function with adaptive weights is introduced, which is formulated as the minimization of the sum of the squared distance between points and the nearest plane on the target. The relative pose is estimated by solving the perspective-n-point (PnP) problem. Our experimental results through simulations in various noise scenarios show that the proposed method estimates the relative poses with higher accuracy and stability compared to existing methods, in terms of the mean and standard deviation of errors. The source code is available at https://github.com/ygchoi11/3DLiDAR-Camera_Calibration .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
将心比鑫完成签到,获得积分10
刚刚
刚刚
852应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
研友_nqvkOZ应助科研通管家采纳,获得10
1秒前
尝原完成签到,获得积分10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助GG酱采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
bjsun应助科研通管家采纳,获得10
1秒前
蝴蝶变成毛毛虫完成签到,获得积分10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
mmmmmMM完成签到,获得积分10
3秒前
洋葱王子发布了新的文献求助10
3秒前
3秒前
先锋发布了新的文献求助10
3秒前
3秒前
Maolin发布了新的文献求助10
4秒前
张甜发布了新的文献求助100
4秒前
纸飞机的梦完成签到,获得积分10
4秒前
汉堡包应助Msure采纳,获得10
5秒前
GGBond发布了新的文献求助10
5秒前
隐形的凡阳完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
麦辣鸡腿堡完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517644
求助须知:如何正确求助?哪些是违规求助? 4610367
关于积分的说明 14521910
捐赠科研通 4547520
什么是DOI,文献DOI怎么找? 2491664
邀请新用户注册赠送积分活动 1473258
关于科研通互助平台的介绍 1445131