A Study on Establishing a Dynamic Color Schlieren System to Observe Airflow and Predict Temperature Changes

气流 纹影 温度测量 计算机科学 计算机视觉 人工智能 光学 工程类 物理 机械工程 量子力学
作者
Bo‐Lin Jian,Jia-Ming Zhou
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 291-303 被引量:1
标识
DOI:10.1109/tci.2024.3365369
摘要

Color schlieren is a technique capable of visualizing fluid waves (e.g., airflows and sound waves) that are beyond the visibility of the naked eye. This study aims to evaluate the airflow temperature in color schlieren through the distribution of different dynamic colors and verify the temperature prediction's feasibility. This approach is extensively helpful for analyzing high-temperature and non-invasive fluids. Compared to infrared thermal images, the advantage of color schlieren images lies in the capability of observing airflow changes in detail; at the same time, the temperature of airflow and measured objects can be obtained from the color distribution. In this Schlieren system, color filters made from low-cost, transparent projector films were adopted, which could change the color of the image captured from the system along with temperature changes, and provide intuitive perceptions. Since scratches from laser printing appeared on the low-cost color filter, the haze would be generated during imaging by the color schlieren system, which reduced the image saturation. To solve the problem of reduction in image saturation, the image dehazing technique was applied in this study to correct the shortcomings. Moreover, the dynamic information of color Schlieren images was also utilized to explore the relationship between Schlieren color distribution and actual temperature, where a temperature prediction model was established with a Feedforward neural network (FNN). Lastly, the Pearson correlation coefficient was applied to evaluate the degree of correlation between the FNN data sets; the Mean square error (MSE) value served as the evaluation index of error between the prediction result and verification data, where the Error histogram reflected the error values for the training, test, and verification datasets. The results indicated that the Pearson correlation coefficient of the correlation analysis was 0.99848, MSE at 0.6663, and the Error histogram reflected 0.4372 as the error between most data. Therefore, the temperature prediction model presented excellent predicting capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵Zhao完成签到,获得积分10
刚刚
刚刚
刚刚
义气丹雪应助顺利灵枫采纳,获得10
1秒前
yj123456发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
英俊的铭应助啊喔采纳,获得10
4秒前
Jie完成签到,获得积分20
4秒前
Leasq发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
青4096完成签到,获得积分10
5秒前
5秒前
Bruce_Wei发布了新的文献求助10
6秒前
nanali19完成签到,获得积分10
7秒前
哲小凡完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
Owen应助HYDROGEL采纳,获得10
10秒前
ASDS完成签到,获得积分10
11秒前
卡卡完成签到,获得积分10
11秒前
11秒前
呆鸥完成签到,获得积分10
11秒前
yang完成签到,获得积分10
12秒前
王敬顺发布了新的文献求助10
14秒前
Servant2023发布了新的文献求助10
14秒前
16秒前
乐乐应助Yume采纳,获得10
18秒前
20秒前
21秒前
22秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
Criminology34应助健壮的绿凝采纳,获得10
23秒前
慕青应助读书的时候采纳,获得10
23秒前
量子星尘发布了新的文献求助10
25秒前
北风北风完成签到 ,获得积分10
25秒前
Yuu发布了新的文献求助10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700397
求助须知:如何正确求助?哪些是违规求助? 5137027
关于积分的说明 15229954
捐赠科研通 4855359
什么是DOI,文献DOI怎么找? 2605301
邀请新用户注册赠送积分活动 1556711
关于科研通互助平台的介绍 1514725