Leveraging machine learning to dissect role of combinations of amino acids in modulating the effect of zinc on mammalian cell growth

氨基酸 天冬酰胺 生物化学 脯氨酸 色氨酸 谷氨酰胺 天冬氨酸 苏氨酸 生物 化学 丝氨酸 有机化学
作者
Ujjiti Pandey,Indrani Madhugiri,Chetan Gadgil,Mugdha Gadgil
出处
期刊:Biotechnology Progress [American Chemical Society]
卷期号:40 (3)
标识
DOI:10.1002/btpr.3436
摘要

Abstract Although the contributions of individual components of cell culture media are largely known, their combinatorial effects are far less understood. Experiments varying one component at a time cannot identify combinatorial effects, and analysis of the large number of experiments required to decipher such effects is challenging. Machine learning algorithms can help in the analysis of such datasets to identify multi‐component interactions. Zinc toxicity in vitro is known to change depending on amino acid concentration in the extracellular medium. Multiple amino acids are known to be involved in this protection. Thirty‐two amino acid compositions were formulated to evaluate their effect on the growth of CHO cells under high zinc conditions. A sequential machine learning analysis methodology was used, which led to the identification of a set of amino acids (threonine, proline, glutamate, aspartate, asparagine, and tryptophan) contributing to protection from zinc. Our results suggest that a decrease in availability of these set of amino acids due to consumption may affect cell growth in media formulated with high zinc concentrations, and in contrast, normal levels of these amino acids are associated with better tolerance to high zinc concentration. Our sequential analysis method may be similarly employed for high throughput medium design and optimization experiments to identify interactions among a large number of cell culture medium components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福行天发布了新的文献求助10
刚刚
朔寒完成签到,获得积分10
刚刚
1秒前
ZC完成签到,获得积分10
1秒前
hero发布了新的文献求助10
1秒前
慕青应助心飞翔采纳,获得10
2秒前
zys发布了新的文献求助10
3秒前
Gxt完成签到,获得积分10
3秒前
3秒前
尼玛完成签到,获得积分10
4秒前
WZJ发布了新的文献求助10
4秒前
5秒前
xwq应助CY-a301E采纳,获得10
5秒前
zxxzxx发布了新的文献求助10
5秒前
畅快灵薇发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
潇洒馒头完成签到,获得积分10
6秒前
李健应助czk采纳,获得10
6秒前
烟花应助精明的代萱采纳,获得10
7秒前
LT发布了新的文献求助10
7秒前
李7发布了新的文献求助10
7秒前
Bruce Lin发布了新的文献求助10
9秒前
www完成签到,获得积分10
9秒前
Ting完成签到,获得积分10
10秒前
水何澹澹完成签到,获得积分0
10秒前
11秒前
12秒前
lee发布了新的文献求助10
12秒前
江谷林完成签到,获得积分20
12秒前
小耳朵发布了新的文献求助10
13秒前
crush完成签到 ,获得积分10
13秒前
HP完成签到,获得积分10
15秒前
江谷林发布了新的文献求助30
16秒前
16秒前
16秒前
炙热的雪完成签到 ,获得积分10
17秒前
科研小白发布了新的文献求助10
17秒前
vex完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806526
求助须知:如何正确求助?哪些是违规求助? 3351332
关于积分的说明 10353525
捐赠科研通 3067168
什么是DOI,文献DOI怎么找? 1684366
邀请新用户注册赠送积分活动 809496
科研通“疑难数据库(出版商)”最低求助积分说明 765543