Exploring pollutant joint effects in disease through interpretable machine learning

污染物 空气污染物 人工智能 机器学习 Boosting(机器学习) 计算机科学 环境科学 空气污染 生物 生态学
作者
Shuo Wang,Tianzhuo Zhang,Ziheng Li,Jinglan Hong
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:467: 133707-133707 被引量:6
标识
DOI:10.1016/j.jhazmat.2024.133707
摘要

Identifying the impact of pollutants on diseases is crucial. However, assessing the health risks posed by the interplay of multiple pollutants is challenging. This study introduces the concept of Pollutants Outcome Disease, integrating multidisciplinary knowledge and employing explainable artificial intelligence (AI) to explore the joint effects of industrial pollutants on diseases. Using lung cancer as a representative case study, an extreme gradient boosting predictive model that integrates meteorological, socio-economic, pollutants, and lung cancer statistical data is developed. The joint effects of industrial pollutants on lung cancer are identified and analyzed by employing the SHAP (Shapley Additive exPlanations) interpretable machine learning technique. Results reveal substantial spatial heterogeneity in emissions from CPG and ILC, highlighting pronounced nonlinear relationships among variables. The model yielded strong predictions (an R of 0.954, an RMSE of 4283, and an R2 of 0.911) and emphasized the impact of pollutant emission amounts on lung cancer responses. Diverse joint effects patterns were observed, varying in terms of patterns, regions (frequency), and the extent of antagonistic and synergistic effects among pollutants. The study provides a new perspective for exploring the joint effects of pollutants on diseases and demonstrates the potential of AI technology to assist scientific discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈晚拧发布了新的文献求助10
刚刚
梗梗发布了新的文献求助10
刚刚
Joy发布了新的文献求助10
1秒前
知足的憨人*-*完成签到,获得积分10
2秒前
但行好事完成签到,获得积分10
2秒前
可可发布了新的文献求助10
2秒前
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Leukocyte应助科研通管家采纳,获得10
4秒前
springwyc应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助Ziyi_Xu采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得50
4秒前
科研通AI5应助科研通管家采纳,获得80
4秒前
小明应助科研通管家采纳,获得20
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
springwyc应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
dfx完成签到,获得积分10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
6秒前
英姑应助超级幻梅采纳,获得10
6秒前
Hello应助yycc采纳,获得10
6秒前
7秒前
科研通AI5应助微笑白萱采纳,获得10
7秒前
我是老大应助微笑白萱采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751776
求助须知:如何正确求助?哪些是违规求助? 4097076
关于积分的说明 12676346
捐赠科研通 3809730
什么是DOI,文献DOI怎么找? 2103383
邀请新用户注册赠送积分活动 1128550
关于科研通互助平台的介绍 1005521