概化理论
化学信息学
分类
一般化
人工智能
计算机科学
深度学习
功能(生物学)
机器学习
心理学
生物
生物信息学
认识论
发展心理学
哲学
进化生物学
作者
Seokhyun Moon,Wonho Zhung,Woo Youn Kim
摘要
Abstract Accurate and rapid prediction of protein–ligand interactions (PLIs) is the fundamental challenge of drug discovery. Deep learning methods have been harnessed for this purpose, yet the insufficient generalizability of PLI prediction prevents their broader impact on practical applications. Here, we highlight the significance of PLI model generalizability by conceiving PLIs as a function defined on infinitely diverse protein–ligand pairs and binding poses. To delve into the generalization challenges within PLI predictions, we comprehensively explore the evaluation strategies to assess the generalizability fairly. Moreover, we categorize structure‐based PLI models with leveraged strategies for learning generalizable features from structure‐based PLI data. Finally, we conclude the review by emphasizing the need for accurate pose‐predicting methods, which is a prerequisite for more accurate PLI predictions. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Chemoinformatics Structure and Mechanism > Computational Biochemistry and Biophysics
科研通智能强力驱动
Strongly Powered by AbleSci AI