(Zn2+ + Cd2+) co-doped CaCu3Ti4O12 ceramics with enhanced dielectric permittivity and reduced dielectric loss tangent

材料科学 电介质 耗散因子 介电谱 介电常数 X射线光电子能谱 介电损耗 陶瓷 兴奋剂 微观结构 分析化学(期刊) 掺杂剂 阻挡层 复合材料 化学工程 电极 物理化学 化学 图层(电子) 光电子学 电化学 色谱法 工程类
作者
Jakkree Boonlakhorn,Pornjuk Srepusharawoot
出处
期刊:Materials Chemistry and Physics [Elsevier BV]
卷期号:314: 128941-128941 被引量:8
标识
DOI:10.1016/j.matchemphys.2024.128941
摘要

The present study systematically investigated the structure, dielectric properties, and electrical response of Ca1-xCdxCu3-yZnyTi4O12 (x = y = 0, 0.025, 0.05, and 0.10). The XRD analysis indicates the presence of a CaCu3Ti4O12 phase in all the sintered ceramics, with no indications of impurity phases found. Achieving high dielectric permittivity and low loss tangent can be accomplished through codoping with Zn2+/Cd2+. At room temperature and 1 kHz, the Ca0.95Cd0.05Cu2.95Zn0.05Ti4O12 ceramic has a high dielectric constant of ∼1.61 × 105 and a low loss tangent of ∼0.03. In addition, codoping ions can enhance the stability of dielectric permittivity with respect to temperature variations. The utilization of impedance spectroscopy as a technique confirms the heterogeneous microstructure observed in sintered materials. The results of this investigation suggest a potential association between the internal barrier layer capacitor model and the underlying cause of the colossal dielectric characteristics observed in Ca1-xCdxCu3-yZnyTi4O12 materials. The analysis of X-ray photoelectron spectroscopy indicates the presence of Cu+ and Ti3+ species, which could potentially exert a significant impact on the development of n-type semiconducting grains in Ca1-xCdxCu3-yZnyTi4O12 ceramics. This influence is attributed to the existence of oxygen vacancies. Theoretical simulations revealed that a Zn atom is situated in proximity to a Cd atom within the CCTO structure. Furthermore, our findings indicate that the oxygen vacancy does not interact with the dopants. Our electron density analysis suggests that the presence of Cu+ and Ti3+ ions, as observed by XPS measurements, is a consequence of the existing oxygen vacancy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDDDDU发布了新的文献求助30
刚刚
逍遥猪皮完成签到,获得积分10
1秒前
1秒前
tar完成签到,获得积分10
1秒前
爆米花应助sean采纳,获得10
1秒前
2秒前
wonderfulhan完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
舒心的耷完成签到,获得积分10
5秒前
咸鱼饭团完成签到,获得积分10
5秒前
5秒前
DuduWang发布了新的文献求助10
7秒前
8秒前
浮游应助鹿友菌采纳,获得10
10秒前
打野完成签到,获得积分10
10秒前
zz发布了新的文献求助10
13秒前
思源应助biiii采纳,获得10
13秒前
万能图书馆应助bubble采纳,获得10
13秒前
mg完成签到,获得积分10
14秒前
田様应助12345采纳,获得10
15秒前
KK完成签到,获得积分10
16秒前
木卓完成签到,获得积分10
16秒前
穆天宇完成签到,获得积分10
16秒前
NexusExplorer应助xhn采纳,获得10
17秒前
ZZICU发布了新的文献求助10
17秒前
小蘑菇应助元山柏采纳,获得10
18秒前
CodeCraft应助tar采纳,获得10
18秒前
19秒前
22秒前
Ava应助平常听枫采纳,获得10
22秒前
一包辣条完成签到,获得积分10
22秒前
23秒前
23秒前
求是鹰完成签到,获得积分10
23秒前
24秒前
labordoc完成签到,获得积分10
24秒前
杨慧玲发布了新的文献求助10
25秒前
25秒前
yannick发布了新的文献求助10
26秒前
海洋发布了新的文献求助10
27秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978174
求助须知:如何正确求助?哪些是违规求助? 4231199
关于积分的说明 13178705
捐赠科研通 4021946
什么是DOI,文献DOI怎么找? 2200483
邀请新用户注册赠送积分活动 1212958
关于科研通互助平台的介绍 1129258