Performance of Six Metaheuristic Algorithms for Multi-Objective Optimization of Nonlinear Inelastic Steel Trusses

桁架 数学优化 进化算法 帕累托原理 非线性系统 元启发式 多目标优化 遗传算法 数学 算法 结构工程 计算机科学 工程类 物理 量子力学
作者
Truong-Son Cao,Thi-Thanh-Thuy Nguyen,Van-Son Nguyen,Viet-Hung Truong,Huu-Hue Nguyen
出处
期刊:Buildings [MDPI AG]
卷期号:13 (4): 868-868 被引量:22
标识
DOI:10.3390/buildings13040868
摘要

This paper presents a multi-objective optimization of steel trusses using direct analysis. The total weight and the inter-story drift or displacements of the structure were two conflict objectives, while the constraints relating to strength and serviceability load combinations were evaluated using nonlinear inelastic and nonlinear elastic analyses, respectively. Six common metaheuristic algorithms such as nondominated sorting genetic algorithm-II (NSGA-II), NSGA-III, generalized differential evolution (GDE3), PSO-based MOO using crowding, mutation, and ε-dominance (OMOPSO), improving the strength Pareto evolutionary algorithm (SPEA2), and multi-objective evolutionary algorithm based on decomposition (MOEA/D) were applied to solve the developed MOO problem. Four truss structures were studied including a planar 10-bar truss, a spatial 72-bar truss, a planar 47-bar powerline truss, and a planar 113-bar truss bridge. The numerical results showed a nonlinear relationship and inverse proportion between the two objectives. Furthermore, all six algorithms were efficient at finding feasible optimal solutions. No algorithm outperformed the others, but NSGA-II and MOEA/D seemed to be better at both searching Pareto and anchor points. MOEA/D was also more stable and yields a better solution spread. OMOPSO was also good at solution spread, but its stability was worse than MOEA/D. NSGA-III was less efficient at finding anchor points, although it can effectively search for Pareto points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
145263完成签到 ,获得积分10
刚刚
Owen应助shiring采纳,获得10
刚刚
Wenroy完成签到,获得积分10
1秒前
ryan发布了新的文献求助10
1秒前
2秒前
3秒前
小小应助科研通管家采纳,获得10
3秒前
小小应助科研通管家采纳,获得10
3秒前
小小应助科研通管家采纳,获得10
3秒前
小小应助科研通管家采纳,获得10
3秒前
小小应助科研通管家采纳,获得10
3秒前
小小应助科研通管家采纳,获得10
3秒前
小小应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
jiunuan应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
lsl应助科研通管家采纳,获得50
3秒前
Orange应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
刘祺芳发布了新的文献求助10
3秒前
asdfzxcv应助科研通管家采纳,获得10
3秒前
lsl应助科研通管家采纳,获得50
4秒前
asdfzxcv应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
qprcddd发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
ccalvintan发布了新的文献求助10
6秒前
VV发布了新的文献求助10
6秒前
GSirius完成签到,获得积分10
7秒前
cassie完成签到,获得积分10
7秒前
7秒前
Frank发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
ddd发布了新的文献求助10
8秒前
ryan完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812