Artificial Intelligence Methods Applied to Catalytic Cracking Processes

催化裂化 开裂 计算机科学 材料科学 复合材料
作者
Fan Yang,Xu Mao,Wenqiang Lei,Jiancheng Lv
出处
期刊:Big data mining and analytics [Tsinghua University Press]
卷期号:6 (3): 361-380 被引量:15
标识
DOI:10.26599/bdma.2023.9020002
摘要

Fluidic Catalytic Cracking (FCC) is a complex petrochemical process affected by many highly non-linear and interrelated factors. Product yield analysis, flue gas desulfurization prediction, and abnormal condition warning are several key research directions in FCC. This paper will sort out the relevant research results of the existing Artificial Intelligence (AI) algorithms applied to the analysis and optimization of catalytic cracking processes, with a view to providing help for the follow-up research. Compared with the traditional mathematical mechanism method, the AI method can effectively solve the difficulties in FCC process modeling, such as high-dimensional, nonlinear, strong correlation, and large delay. AI methods applied in product yield analysis build models based on massive data. By fitting the functional relationship between operating variables and products, the excessive simplification of mechanism model can be avoided, resulting in high model accuracy. AI methods applied in flue gas desulfurization can be usually divided into two stages: modeling and optimization. In the modeling stage, data-driven methods are often used to build the system model or rule base; In the optimization stage, heuristic search or reinforcement learning methods can be applied to find the optimal operating parameters based on the constructed model or rule base. AI methods, including data-driven and knowledge-driven algorithms, are widely used in the abnormal condition warning. Knowledge-driven methods have advantages in interpretability and generalization, but disadvantages in construction difficulty and prediction recall. While the data-driven methods are just the opposite. Thus, some studies combine these two methods to obtain better results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rongyiming完成签到,获得积分10
刚刚
刚刚
科研通AI6应助tianchen采纳,获得10
刚刚
wanci应助cxm采纳,获得10
1秒前
1秒前
Feeling完成签到,获得积分10
1秒前
天侠客完成签到,获得积分10
1秒前
研友_8Raw2Z发布了新的文献求助10
1秒前
1秒前
tudouni完成签到 ,获得积分10
2秒前
我爱读文献完成签到,获得积分10
2秒前
Glass完成签到,获得积分10
2秒前
2秒前
君君发布了新的文献求助10
3秒前
害羞便当完成签到,获得积分10
3秒前
星辰大海应助茸茸茸采纳,获得10
3秒前
3秒前
小星星发布了新的文献求助30
4秒前
SYBH完成签到,获得积分20
4秒前
5秒前
5秒前
鼓鼓发布了新的文献求助10
5秒前
刘树琦完成签到 ,获得积分10
5秒前
简默发布了新的文献求助10
5秒前
5秒前
轻松的妍完成签到,获得积分10
6秒前
6秒前
SYBH发布了新的文献求助10
6秒前
朱庆柯发布了新的文献求助10
7秒前
完美世界应助doudou采纳,获得10
7秒前
gunright完成签到,获得积分10
7秒前
丸子发布了新的文献求助10
8秒前
胖鱼吊灯完成签到,获得积分10
8秒前
盼山发布了新的文献求助10
8秒前
Jasper应助huang_qibebt采纳,获得10
9秒前
橘子完成签到 ,获得积分10
9秒前
WSY1234发布了新的文献求助10
9秒前
Tian发布了新的文献求助10
10秒前
快乐秋柔发布了新的文献求助10
10秒前
大志发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5361218
求助须知:如何正确求助?哪些是违规求助? 4491557
关于积分的说明 13982932
捐赠科研通 4394291
什么是DOI,文献DOI怎么找? 2413865
邀请新用户注册赠送积分活动 1406725
关于科研通互助平台的介绍 1381258