One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation

计算机科学 插补(统计学) 可解释性 缺少数据 变压器 卷积神经网络 人工智能 对比度(视觉) 编码器 预处理器 模式识别(心理学) 数据挖掘 机器学习 物理 操作系统 电压 量子力学
作者
Jiang Liu,Srivathsa Pasumarthi,Ben A. Duffy,Enhao Gong,Keshav Datta,Greg Zaharchuk
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2577-2591 被引量:62
标识
DOI:10.1109/tmi.2023.3261707
摘要

Multi-contrast magnetic resonance imaging (MRI) is widely used in clinical practice as each contrast provides complementary information. However, the availability of each imaging contrast may vary amongst patients, which poses challenges to radiologists and automated image analysis algorithms. A general approach for tackling this problem is missing data imputation, which aims to synthesize the missing contrasts from existing ones. While several convolutional neural networks (CNN) based algorithms have been proposed, they suffer from the fundamental limitations of CNN models, such as the requirement for fixed numbers of input and output channels, the inability to capture long-range dependencies, and the lack of interpretability. In this work, we formulate missing data imputation as a sequence-to-sequence learning problem and propose a multi-contrast multi-scale Transformer (MMT), which can take any subset of input contrasts and synthesize those that are missing. MMT consists of a multi-scale Transformer encoder that builds hierarchical representations of inputs combined with a multi-scale Transformer decoder that generates the outputs in a coarse-to-fine fashion. The proposed multi-contrast Swin Transformer blocks can efficiently capture intra- and inter-contrast dependencies for accurate image synthesis. Moreover, MMT is inherently interpretable as it allows us to understand the importance of each input contrast in different regions by analyzing the in-built attention maps of Transformer blocks in the decoder. Extensive experiments on two large-scale multi-contrast MRI datasets demonstrate that MMT outperforms the state-of-the-art methods quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Uykizhao完成签到,获得积分10
1秒前
1秒前
2秒前
tango发布了新的文献求助10
2秒前
vivi完成签到,获得积分10
3秒前
慕青应助Leeny采纳,获得10
3秒前
3秒前
轻松雁蓉发布了新的文献求助10
4秒前
5秒前
7秒前
初冬关注了科研通微信公众号
8秒前
9秒前
lily000完成签到,获得积分10
9秒前
退而求其次完成签到,获得积分10
10秒前
梁云完成签到,获得积分20
10秒前
墨辞完成签到 ,获得积分10
10秒前
10秒前
bbihk完成签到,获得积分10
10秒前
10秒前
HuMinghui完成签到,获得积分20
10秒前
zzz琪完成签到,获得积分10
10秒前
一窝八个完成签到,获得积分10
12秒前
风中冰香发布了新的文献求助10
12秒前
HuMinghui发布了新的文献求助10
13秒前
Yu完成签到,获得积分20
13秒前
14秒前
赵海锋发布了新的文献求助10
15秒前
EricXu发布了新的文献求助10
15秒前
15秒前
zzy发布了新的文献求助10
17秒前
充电宝应助brucezheng采纳,获得10
18秒前
Leeny发布了新的文献求助10
18秒前
在水一方应助轻松雁蓉采纳,获得10
18秒前
快到碗里来完成签到,获得积分10
18秒前
19秒前
19秒前
笑点低涟妖完成签到 ,获得积分10
20秒前
Owen应助run采纳,获得10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120466
求助须知:如何正确求助?哪些是违规求助? 4325887
关于积分的说明 13477875
捐赠科研通 4159445
什么是DOI,文献DOI怎么找? 2279511
邀请新用户注册赠送积分活动 1281345
关于科研通互助平台的介绍 1220076