The Effect of the SEI Layer Mechanical Deformation on the Passivity of a Si Anode in Organic Carbonate Electrolytes

电解质 材料科学 阳极 变形(气象学) 碳酸乙烯酯 电极 碳酸盐 碳酸丙烯酯 化学工程 复合材料 化学 冶金 物理化学 工程类
作者
Insun Yoon,Jonathan M. Larson,Robert Kostecki
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (7): 6943-6954 被引量:31
标识
DOI:10.1021/acsnano.3c00724
摘要

The solid electrolyte interphase (SEI) on a Si negative electrode in carbonate-based organic electrolytes shows intrinsically poor passivating behavior, giving rise to unsatisfactory calendar life of Li-ion batteries. Moreover, mechanical strains induced in the SEI due to large volume changes of Si during charge-discharge cycling could contribute to its mechanical instability and poor passivating behavior. This study elucidates the influence that static mechanical deformation of the SEI has on the rate of unwanted parasitic reactions at the Si/electrolyte interface as a function of electrode potential. The experimental approach involves the utilization of Si thin-film electrodes on substrates with disparate elastic moduli, which either permit or suppress the SEI deformation in response to Si volume changes upon charging-discharging. We find that static mechanical stretching and deformation of the SEI results in an increased parasitic electrolyte reduction current on Si. Furthermore, attenuated total reflection and near-field Fourier-transform infrared nanospectroscopy reveal that the static mechanical stretching and deformation of the SEI fosters a selective transport of linear carbonate solvent through, and nanoconfinement within, the SEI. These, in turn, promote selective solvent reduction and continuous electrolyte decomposition on Si electrodes, reducing the calendar life of Si anode-based Li-ion batteries. Finally, possible correlations between the structure and chemical composition of the SEI layer and its mechanical and chemical resilience under prolonged mechanical deformation are discussed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ydy3128发布了新的文献求助10
刚刚
在水一方应助biubiubiu采纳,获得10
刚刚
刚刚
rigour完成签到,获得积分10
刚刚
tiptip应助吴天天采纳,获得10
刚刚
123发布了新的文献求助10
1秒前
不医人发布了新的文献求助10
1秒前
华仔应助啾咪蜜采纳,获得10
2秒前
英姑应助我爱小juju采纳,获得10
2秒前
3秒前
小树完成签到,获得积分10
4秒前
所所应助lzr采纳,获得10
5秒前
6秒前
丘比特应助wenzhang666采纳,获得10
6秒前
隐形曼青应助琪小7采纳,获得10
6秒前
daker发布了新的文献求助10
6秒前
领导范儿应助清爽代芹采纳,获得10
7秒前
零可林发布了新的文献求助30
7秒前
7秒前
都哥完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
乐乐应助fhg采纳,获得10
8秒前
小树发布了新的文献求助10
8秒前
bobo完成签到,获得积分10
9秒前
10秒前
我要毕业发布了新的文献求助10
11秒前
11秒前
awenger完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
14秒前
biubiubiu发布了新的文献求助10
14秒前
开心黄蜂发布了新的文献求助10
15秒前
嘤鸣发布了新的文献求助10
15秒前
整齐听南完成签到 ,获得积分10
15秒前
菜菜果冻发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851