亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Lighter the Better: Rethinking Transformers in Medical Image Segmentation Through Adaptive Pruning

计算机科学 人工智能 变压器 图像分割 分割 嵌入 机器学习 计算机视觉 模式识别(心理学) 工程类 电气工程 电压
作者
Xian Lin,Li Yu,Kwang‐Ting Cheng,Zengqiang Yan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2325-2337 被引量:29
标识
DOI:10.1109/tmi.2023.3247814
摘要

Vision transformers have recently set off a new wave in the field of medical image analysis due to their remarkable performance on various computer vision tasks. However, recent hybrid-/transformer-based approaches mainly focus on the benefits of transformers in capturing long-range dependency while ignoring the issues of their daunting computational complexity, high training costs, and redundant dependency. In this paper, we propose to employ adaptive pruning to transformers for medical image segmentation and propose a lightweight and effective hybrid network APFormer. To our best knowledge, this is the first work on transformer pruning for medical image analysis tasks. The key features of APFormer are self-regularized self-attention (SSA) to improve the convergence of dependency establishment, Gaussian-prior relative position embedding (GRPE) to foster the learning of position information, and adaptive pruning to eliminate redundant computations and perception information. Specifically, SSA and GRPE consider the well-converged dependency distribution and the Gaussian heatmap distribution separately as the prior knowledge of self-attention and position embedding to ease the training of transformers and lay a solid foundation for the following pruning operation. Then, adaptive transformer pruning, both query-wise and dependency-wise, is performed by adjusting the gate control parameters for both complexity reduction and performance improvement. Extensive experiments on two widely-used datasets demonstrate the prominent segmentation performance of APFormer against the state-of-the-art methods with much fewer parameters and lower GFLOPs. More importantly, we prove, through ablation studies, that adaptive pruning can work as a plug-n-play module for performance improvement on other hybrid-/transformer-based methods. Code is available at https://github.com/xianlin7/APFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huihongzeng完成签到,获得积分10
刚刚
2秒前
酷波er应助bbbbb采纳,获得10
3秒前
happy8le发布了新的文献求助10
6秒前
lyyt发布了新的文献求助10
6秒前
8秒前
褚幻香完成签到 ,获得积分0
9秒前
9秒前
学术大拿完成签到,获得积分10
10秒前
bbbbb完成签到,获得积分10
15秒前
lyyt完成签到,获得积分10
15秒前
16秒前
18秒前
Monicamo发布了新的文献求助10
19秒前
脑洞疼应助马帅帅采纳,获得10
20秒前
27秒前
猜不猜不完成签到 ,获得积分10
31秒前
36秒前
39秒前
40秒前
Adel完成签到 ,获得积分10
41秒前
yueyue发布了新的文献求助10
44秒前
ovo发布了新的文献求助10
44秒前
Billy发布了新的文献求助10
48秒前
50秒前
HongqiZhang完成签到 ,获得积分10
50秒前
大个应助科研通管家采纳,获得10
54秒前
斯寜应助科研通管家采纳,获得10
54秒前
斯寜应助科研通管家采纳,获得10
54秒前
学术大拿发布了新的文献求助10
55秒前
57秒前
科研通AI5应助Evan采纳,获得10
57秒前
1分钟前
1分钟前
打打应助浪里白条采纳,获得10
1分钟前
1分钟前
MMMMMeng完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Evan发布了新的文献求助10
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827166
求助须知:如何正确求助?哪些是违规求助? 3369503
关于积分的说明 10456429
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699723
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251