Self-Attention Metric Learning Based on Multiscale Feature Fusion for Few-Shot Fault Diagnosis

公制(单位) 人工智能 计算机科学 特征提取 断层(地质) 特征(语言学) 模式识别(心理学) 相似性(几何) 样品(材料) 机器学习 数据挖掘 深度学习 特征学习 工程类 图像(数学) 地质学 哲学 地震学 色谱法 语言学 化学 运营管理
作者
Jingsong Xie,Jie Liu,Tianqi Ding,Tiantian Wang,Tianjian Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 19771-19782 被引量:32
标识
DOI:10.1109/jsen.2023.3296750
摘要

The intelligent diagnosis model based on deep learning method can effectively and accurately diagnose the health state of bearings widely used in various mechanical equipment. However, in engineering practice, it is difficult to obtain sufficient labeled fault data, which would reduce the diagnosis performance. In order to solve the above problem, this article proposes a self-attention metric learning based on multiscale feature fusion to classify the bearing fault with few shots. The proposed few-shot intelligent diagnosis model mainly contains the feature extraction module and metric learning module. First, the vibration data need to be combined in pairs to form sample pairs, which are input into the feature extraction module based on multiscale feature fusion (MSFF). This input approach can increase the learning tasks so as to alleviate the problem of insufficient training samples. Then, the extracted features are concatenated and input into the metric learning module whose learning ability is improved by adding the self-attention (SA) network, and the input features are eventually converted into the similarity. Finally, the fault type can be identified according to the maximum similarity value between the test sample and samples with different labels. Three experiment cases are conducted to validate the performance of proposed intelligent diagnosis model. The experimental results show that the proposed model can accurately classify the bearing fault with few-shot case. Additionally, the comparison experiments with the traditional models have also validated the advantage of the proposed intelligent diagnosis model for few-shot case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李菠萝完成签到,获得积分10
刚刚
tian发布了新的文献求助10
刚刚
玉崟完成签到 ,获得积分10
1秒前
BowieHuang应助Liuxinyan采纳,获得10
1秒前
科研顺利完成签到,获得积分20
1秒前
1秒前
花痴的豪英完成签到,获得积分10
1秒前
4秒前
4秒前
5秒前
冷酷的松思完成签到,获得积分10
5秒前
chun发布了新的文献求助10
6秒前
6秒前
slk发布了新的文献求助10
6秒前
夔kk完成签到 ,获得积分10
6秒前
轻松盼山给轻松盼山的求助进行了留言
6秒前
DR完成签到,获得积分10
6秒前
嘿嘿发布了新的文献求助30
6秒前
结实旭尧完成签到 ,获得积分10
7秒前
Ava应助tian采纳,获得10
7秒前
zwx完成签到,获得积分10
8秒前
静静小可爱完成签到,获得积分10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
Young应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Mine_cherry应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
一二三发布了新的文献求助10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
Mine_cherry应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5592396
求助须知:如何正确求助?哪些是违规求助? 4678310
关于积分的说明 14804716
捐赠科研通 4641394
什么是DOI,文献DOI怎么找? 2533869
邀请新用户注册赠送积分活动 1502015
关于科研通互助平台的介绍 1469177