暴露的
队列
人口
基因组
老年学
计算机科学
医学
生物
环境卫生
遗传学
内科学
基因
作者
Dirk H. M. Pelt,Philippe C. Habets,Christiaan H. Vinkers,Lannie Ligthart,C.E.M. van Beijsterveldt,René Pool,Meike Bartels
标识
DOI:10.1038/s44220-024-00294-2
摘要
Effective personalized well-being interventions require the ability to predict who will thrive or not, and the understanding of underlying mechanisms. Here, using longitudinal data of a large population cohort (the Netherlands Twin Register, collected 1991-2022), we aim to build machine learning prediction models for adult well-being from the exposome and genome, and identify the most predictive factors (
科研通智能强力驱动
Strongly Powered by AbleSci AI