Deciphering the immune-metabolic nexus in sepsis: a single-cell sequencing analysis of neutrophil heterogeneity and risk stratification

危险分层 败血症 免疫系统 中性粒细胞胞外陷阱 Nexus(标准) 免疫学 生物 分层(种子) 医学 计算生物学 生物信息学 炎症 内科学 计算机科学 种子休眠 植物 发芽 休眠 嵌入式系统
作者
Shaoxiong Jin,Huazhi Zhang,Qingjiang Lin,Jinfeng Yang,Rongyao Zeng,Zebo Xu,Wendong Sun
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15 被引量:1
标识
DOI:10.3389/fimmu.2024.1398719
摘要

Background Metabolic dysregulation following sepsis can significantly compromise patient prognosis by altering immune-inflammatory responses. Despite its clinical relevance, the exact mechanisms of this perturbation are not yet fully understood. Methods Single-cell RNA sequencing (scRNA-seq) was utilized to map the immune cell landscape and its association with metabolic pathways during sepsis. This study employed cell-cell interaction and phenotype profiling from scRNA-seq data, along with pseudotime trajectory analysis, to investigate neutrophil differentiation and heterogeneity. By integrating scRNA-seq with Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning techniques, key genes were identified. These genes were used to develop and validate a risk score model and nomogram, with their efficacy confirmed through Receiver Operating Characteristic (ROC) curve analysis. The model’s practicality was further reinforced through enrichment and immune characteristic studies based on the risk score and in vivo validation of a critical gene associated with sepsis. Results The complex immune landscape and neutrophil roles in metabolic disturbances during sepsis were elucidated by our in-depth scRNA-seq analysis. Pronounced neutrophil interactions with diverse cell types were revealed in the analysis of intercellular communication, highlighting pathways that differentiate between proximal and core regions within atherosclerotic plaques. Insight into the evolution of neutrophil subpopulations and their differentiation within the plaque milieu was provided by pseudotime trajectory mappings. Diagnostic markers were identified with the assistance of machine learning, resulting in the discovery of PIM1, HIST1H1C, and IGSF6. The identification of these markers culminated in the development of the risk score model, which demonstrated remarkable precision in sepsis prognosis. The model’s capability to categorize patient profiles based on immune characteristics was confirmed, particularly in identifying individuals at high risk with suppressed immune cell activity and inflammatory responses. The role of PIM1 in modulating the immune-inflammatory response during sepsis was further confirmed through experimental validation, suggesting its potential as a therapeutic target. Conclusion The understanding of sepsis immunopathology is improved by this research, and new avenues are opened for novel prognostic and therapeutic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
的服务费完成签到,获得积分10
2秒前
澈千子完成签到,获得积分10
3秒前
crazy完成签到 ,获得积分10
3秒前
完美世界应助vfi采纳,获得10
6秒前
坚定的向珊完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
风趣安青完成签到 ,获得积分10
12秒前
超级访云完成签到,获得积分10
14秒前
leaves发布了新的文献求助10
14秒前
14秒前
火柴two完成签到,获得积分10
16秒前
17秒前
李爱国应助Groot采纳,获得10
17秒前
搜集达人应助dzh采纳,获得10
18秒前
garlic完成签到,获得积分10
20秒前
叮当发布了新的文献求助30
20秒前
20秒前
gao456789发布了新的文献求助10
21秒前
外向沅发布了新的文献求助10
22秒前
22秒前
22秒前
老板别打烊完成签到,获得积分10
23秒前
路脚下完成签到 ,获得积分10
23秒前
wlffjessica应助霓霓采纳,获得20
24秒前
刘春林发布了新的文献求助10
24秒前
677发布了新的文献求助10
24秒前
27秒前
Hello应助寻123采纳,获得10
27秒前
27秒前
vfi发布了新的文献求助10
27秒前
星辰大海应助睡着那么快采纳,获得10
27秒前
学术老6完成签到,获得积分10
29秒前
30秒前
30秒前
古道作家完成签到 ,获得积分10
30秒前
BINGOFAN发布了新的文献求助10
31秒前
31秒前
31秒前
外向沅完成签到,获得积分10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231596
求助须知:如何正确求助?哪些是违规求助? 3764977
关于积分的说明 11830407
捐赠科研通 3423970
什么是DOI,文献DOI怎么找? 1878982
邀请新用户注册赠送积分活动 931915
科研通“疑难数据库(出版商)”最低求助积分说明 839431