The effect of EEG Neurofeedback training on sport performance: A systematic review and meta-analysis

神经反射 荟萃分析 脑电图 心理学 物理医学与康复 培训(气象学) 计算机科学 应用心理学 认知心理学 医学 神经科学 地理 内科学 气象学
作者
Chien‐Lin Yu,Ming-Yang Cheng,Xin An,Ting‐Yu Chueh,Jia‐Hao Wu,Kuo‐Pin Wang,Tsung‐Min Hung
出处
期刊:Authorea - Authorea
标识
DOI:10.22541/au.172515656.69023437/v1
摘要

Neurofeedback training (NFT) has emerged as a promising technique for enhancing sports performance by enabling individuals to self-regulate their neural activity. However, only 53% of the 13 included studies, which all published before 2021, in the latest meta-analyses of NFT and motor performance focused on motor performance outcome. Due to the rapid development of neurofeedback, 8 high-quality articles published in 2023 alone. Therefore, there is a need for a new meta-analysis to update the impact of NFT on sports performance. In this systematic review and meta-analysis, we have not only updated the knowledge of the effect of EEG neurofeedback in motor performance, but have also incorporated a standardized methodology, called CRED-nf checklist (Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies), for methodological evaluation of previous EEG neurofeedback studies. The study protocol was pre-registered, and the meta-analysis revealed a moderate positive effect of NFT on sports performance, with a standardized mean difference (SMD) of 0.71 (95% CI: 0.51-0.91, p < 0.001). Importantly, subgroup analyses showed that studies with higher methodological quality, as assessed by the checklist, had significantly larger effect sizes (SMD = 0.98) compared to lower-quality studies (SMD = 0.41). This finding highlights the importance of addressing key methodological gaps, such as reporting on participant strategies, data processing methods, and the relationship between regulation success and behavioral outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZhaoCun完成签到,获得积分10
1秒前
研团子完成签到,获得积分10
2秒前
CodeCraft应助王立娅采纳,获得10
2秒前
3秒前
yudandan@CJLU发布了新的文献求助10
3秒前
6秒前
杨杨发布了新的文献求助10
6秒前
玉洁完成签到,获得积分10
6秒前
lijf2024完成签到,获得积分10
7秒前
螺旋向上发布了新的文献求助30
7秒前
新嗨发布了新的文献求助10
9秒前
背后飞松完成签到 ,获得积分10
11秒前
yudandan@CJLU完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助30
12秒前
传奇3应助杨杨采纳,获得10
14秒前
scm应助元谷雪采纳,获得10
15秒前
我在青年湖旁完成签到,获得积分10
17秒前
Hui完成签到,获得积分0
17秒前
18秒前
李爱国应助有有采纳,获得10
19秒前
19秒前
Hello应助Ghiocel采纳,获得40
19秒前
Behappy完成签到 ,获得积分10
20秒前
车哥爱学习完成签到,获得积分10
20秒前
东方樱应助猫毛采纳,获得10
21秒前
Lily完成签到,获得积分10
22秒前
上官若男应助essential1993采纳,获得10
24秒前
Milou发布了新的文献求助10
24秒前
24秒前
BareBear应助littlepuppy采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
ED应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
25秒前
Elaine发布了新的文献求助10
25秒前
25秒前
LYJ完成签到,获得积分10
27秒前
Hello应助上课杠九八采纳,获得10
27秒前
量子星尘发布了新的文献求助10
30秒前
littlepuppy完成签到,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3860843
求助须知:如何正确求助?哪些是违规求助? 3403149
关于积分的说明 10633421
捐赠科研通 3126209
什么是DOI,文献DOI怎么找? 1723901
邀请新用户注册赠送积分活动 830225
科研通“疑难数据库(出版商)”最低求助积分说明 779001