医学
原发性甲状旁腺功能亢进
自体荧光
甲状旁腺功能亢进
签名(拓扑)
病理
放射科
外科
荧光
光学
物理
几何学
数学
作者
Ege Akgun,Arturan İbrahimli,Eren Berber
标识
DOI:10.1097/xcs.0000000000001147
摘要
The success of parathyroidectomy in primary hyperparathyroidism depends on the intraoperative differentiation of diseased from normal glands. Deep learning can potentially be applied to digitalize this subjective interpretation process that relies heavily on surgeon expertise. In this study, we aimed to investigate whether diseased versus normal parathyroid glands have different near-infrared autofluorescence (NIRAF) signatures and whether related deep learning models can predict normal versus diseased parathyroid glands based on intraoperative in-vivo images.
科研通智能强力驱动
Strongly Powered by AbleSci AI